1887

Abstract

(OuMV), (EpCV) and (CsVC) are three species placed in the genus . We cloned and sequenced their RNA genomes. The sizes of the three genomic RNAs of OuMV, the type member of the genus, were 2814, 1064 and 974 nt and each had one open reading frame. RNA1 potentially encoded a 97.5 kDa protein carrying the GDD motif typical of RNA-dependent RNA polymerases (RdRps). The putative RdRps of ourmiaviruses are distantly related to known viral RdRps, with the closest similarity and phylogenetic affinity observed with fungal viruses of the genus . RNA2 encoded a 31.6 kDa protein which, expressed in bacteria as a His-tag fusion protein and in plants through agroinfiltration, reacted specifically with antibodies made against tubular structures found in the cytoplasm. The ORF2 product is significantly similar to movement proteins of the genus , and phylogenetic analysis supported this evolutionary relationship. The product of OuMV ORF3 is a 23.8 kDa protein. This protein was also expressed in bacteria and plants, and reacted specifically with antisera against the OuMV coat protein. The sequence of the ORF3 protein showed limited but significant similarity to capsid proteins of several plant and animal viruses, although phylogenetic analysis failed to reveal its most likely origin. Taken together, these results indicate that ourmiaviruses comprise a unique group of plant viruses that might have evolved by reassortment of genomic segments of RNA viruses infecting hosts belonging to different eukaryotic kingdoms, in particular, fungi and plants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.013086-0
2009-10-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2525.html?itemId=/content/journal/jgv/10.1099/vir.0.013086-0&mimeType=html&fmt=ahah

References

  1. Accotto, G. P. & Milne, R. G. ( 2008; ). Ourmiavirus. In Encyclopedia of Virology, pp. 500–501. Edited by B. W. J. Mahy & M. H. V. Van Regenmortel. London, UK: Elsevier.
  2. Accotto, G. P., Boccardo, G., Riccioni, L. & Barba, M. ( 1997; ). Comparison of some molecular properties of Ourmia melon and Epirus cherry viruses, two representatives of a proposed new virus group. J Plant Pathol 78, 87–91.
    [Google Scholar]
  3. Aiton, M. M., Lennon, A. M., Roberts, I. M. & Harrison, B. D. ( 1988; ). Two new cassava viruses from Africa. In 5th International Congress of Plant Pathology, Kyoto, Japan, 1988, p. 43.
  4. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  5. Avgelis, A., Barba, M. & Rumbos, I. ( 1989; ). Epirus cherry virus, an unusual virus isolated from cherry with rasp-leaf symptoms in Greece. J Phytopathol 126, 51–58.[CrossRef]
    [Google Scholar]
  6. Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. ( 1999; ). The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791.[CrossRef]
    [Google Scholar]
  7. Bendahmane, A., Farnham, G., Moffett, P. & Baulcombe, D. C. ( 2002; ). Constitutive gain-of-function mutants in a nucleotide binding site – leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32, 195–204.[CrossRef]
    [Google Scholar]
  8. Buck, K. W., Esteban, R. & Hillman, B. I. ( 2005; ). Family Narnaviridae. In Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses, pp. 751–756. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego, CA: Elsevier.
  9. Codoñer, F. M. & Helena, S. F. ( 2008; ). The promiscuous evolutionary history of the family Bromoviridae. J Gen Virol 89, 1739–1747.[CrossRef]
    [Google Scholar]
  10. Coffin, R. S. & Coutts, R. H. A. ( 1995; ). Relationships among Trialeurodes vaporariorum-transmitted yellowing viruses from Europe and North America. J Phytopathol 143, 375–380.[CrossRef]
    [Google Scholar]
  11. Covelli, L., Coutts, R. H. A., Di Serio, F., Citir, A., Açkgöz, S., Hernández, C., Ragozzino, A. & Flores, R. ( 2004; ). Cherry chlorotic rusty spot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double-stranded RNAs. Characterization of a new species in the genus Chrysovirus. J Gen Virol 85, 3389–3397.[CrossRef]
    [Google Scholar]
  12. Edgar, R. C. ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef]
    [Google Scholar]
  13. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. ( 2005; ). Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Elsevier.
  14. Fukuhara, T., Koga, R., Aoki, N., Yuki, C., Yamamoto, N., Oyama, N., Udagawa, T., Horiuchi, H., Miyazaki, S. & other authors ( 2006; ). The wide distribution of endornaviruses, large double-stranded RNA replicons with plasmid-like properties. Arch Virol 151, 995–1002.[CrossRef]
    [Google Scholar]
  15. Gholamalizadeh, R., Vahdat, A., Hossein-Nia, S. V., Elahinia, A. & Bananej, K. ( 2008; ). Occurrence of Ourmia melon virus in the Guilan Province of Northern Iran. Plant Dis 92, 1135
    [Google Scholar]
  16. Gibrat, J. F., Madej, T. & Bryant, S. H. ( 1996; ). Surprising similarities in structure comparison. Curr Opin Struct Biol 6, 377–385.[CrossRef]
    [Google Scholar]
  17. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  18. Hirzmann, J., Luo, D., Hahnen, J. & Hobom, G. ( 1993; ). Determination of messenger RNA 5′- ends by reverse transcription of the cap structure. Nucleic Acids Res 21, 3597–3598.[CrossRef]
    [Google Scholar]
  19. Höfgen, R. & Willmitzer, L. ( 1988; ). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16, 9877 [CrossRef]
    [Google Scholar]
  20. Hong, Y., Cole, T. E., Brzsier, C. M. & Buck, K. W. ( 1998; ). Evolutionary relationships among putative RNA-dependent RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch elm disease fungus, Ophiostoma novo-ulmi, by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome. Virology 246, 158–169.[CrossRef]
    [Google Scholar]
  21. Hull, R. ( 2002; ). Matthews' Plant Virology, 4th edn. New York: Academic Press.
  22. Jobb, G., von Haeseler, A. & Strimmer, K. ( 2004; ). treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4, 18 [CrossRef]
    [Google Scholar]
  23. Koonin, E. V., Choi, G. H., Nuss, D. L., Shapira, R. & Carrington, J. C. ( 1991a; ). Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc Natl Acad Sci U S A 88, 10647–10651.[CrossRef]
    [Google Scholar]
  24. Koonin, E. V., Mushegian, A. R., Ryabov, E. V. & Dolja, V. V. ( 1991b; ). Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72, 2895–2903.[CrossRef]
    [Google Scholar]
  25. Koonin, E. V., Wolf, Y. I., Nagasaki, K. & Dolja, V. V. ( 2008; ). The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 6, 925–939.[CrossRef]
    [Google Scholar]
  26. Kozlakidis, Z., Covelli, L., Di Serio, F., Citir, A., Açkgöz, S., Hernández, C., Ragozzino, A., Flores, R. & Coutts, R. H. A. ( 2006; ). Molecular characterization of the largest mycoviral-like double-stranded RNAs associated with Amasya cherry disease, a disease of presumed fungal aetiology. J Gen Virol 87, 3113–3117.[CrossRef]
    [Google Scholar]
  27. Lee, J.-Y. & Lucas, W. J. ( 2001; ). Phosphorylation of viral movement proteins – regulation of cell-to-cell trafficking. Trends Microbiol 9, 5–8.[CrossRef]
    [Google Scholar]
  28. Lisa, V., Milne, R. G., Accotto, G. P., Boccardo, G., Caciagli, P. & Parvizy, R. ( 1988; ). Ourmia melon virus, a virus from Iran with novel properties. Ann Appl Biol 112, 291–302.[CrossRef]
    [Google Scholar]
  29. Luisoni, E., Milne, R. G. & Vecchiati, M. ( 1995; ). Purification of Tomato yellow leaf curl geminivirus. New Microbiol 18, 253–260.
    [Google Scholar]
  30. Margaria, P., Ciuffo, M., Pacifico, D. & Turina, M. ( 2007; ). Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Mol Plant Microbe Interact 20, 547–558.[CrossRef]
    [Google Scholar]
  31. Martelli, G. P., Adams, M. J., Kreuze, J. F. & Dolja, V. V. ( 2007; ). Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol 45, 73–100.[CrossRef]
    [Google Scholar]
  32. Marzachi, C., Antoniazzi, S., D'Aquilio, M. A. & Boccardo, G. ( 1992; ). Molecular cloning of the segmented RNA genome of Ourmia melon virus. Riv Patol Veg S 2, 3–8.
    [Google Scholar]
  33. Matthews, R. E. F. ( 1991; ). Plant Virology, 3rd edn. San Diego, CA: Academic Press.
  34. Melcher, U. ( 2000; ). The ‘30K’ superfamily of viral movement proteins. J Gen Virol 81, 257–266.
    [Google Scholar]
  35. Milne, R. G. ( 1993; ). Electron microscopy of in vitro preparations. In Diagnosis of Plant Virus Diseases, pp. 215–251. Edited by R. E. F. Matthews. Boca Raton: CRC Press.
  36. Milne, R. G. ( 2005; ). Genus Ourmiavirus. In Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses, pp. 1059–1061. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego, CA: Elsevier.
  37. Milne, R. G., Ramasso, E., Lenzi, R., Masenga, V., Sarindu, N. & Clark, M. F. ( 1995; ). Pre- and post-embedding immunogold labelling and electron microscopy in plant host tissue of three antigenically unrelated MLOs: primula yellows, tomato big bud and bermudagrass white leaf. Eur J Plant Pathol 101, 57–67.[CrossRef]
    [Google Scholar]
  38. Rong, R., Rao, S., Scott, S. W., Carner, G. R. & Tainter, F. H. ( 2002; ). Complete sequence of the genome of two dsRNA viruses from Discula destructiva. Virus Res 90, 217–224.[CrossRef]
    [Google Scholar]
  39. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  40. Sabanadzovic, S., Valverde, R. A., Brown, J. K., Martin, R. R. & Tzanetakis, I. E. ( 2009; ). Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Res 140, 130–137.[CrossRef]
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Sanger, F., Nicken, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  43. Soding, J. ( 2005; ). Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960.[CrossRef]
    [Google Scholar]
  44. Stamatakis, A., Hoover, P. & Rougemont, J. ( 2008; ). A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57, 758–771.[CrossRef]
    [Google Scholar]
  45. Turina, M., Desvoyes, B. & Scholthof, K. B. G. ( 2000; ). A gene cluster encoded by Panicum mosaic virus is associated with virus movement. Virology 266, 120–128.[CrossRef]
    [Google Scholar]
  46. Turina, M., Prodi, A. & Van Alfen, N. K. ( 2003; ). Role of the Mf1–1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 40, 242–251.[CrossRef]
    [Google Scholar]
  47. Turina, M., Ciuffo, M., Lenzi, R., Rostagno, L., Mela, L., Derin, E. & Palmano, S. ( 2006; ). Characterization of four viral species belonging to the family Potyviridae isolated from Ranunculus asiaticus. Phytopathology 96, 560–566.[CrossRef]
    [Google Scholar]
  48. Vaira, A. M., Milne, R. G., Accotto, G. P., Luisoni, E., Masenga, V. & Lisa, V. ( 1997; ). Partial characterization of a new virus from ranunculus with a divided RNA genome and circular supercoiled thread-like particles. Arch Virol 142, 2131–2146.[CrossRef]
    [Google Scholar]
  49. Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., Dicuccio, M., Edgar, R. & other authors ( 2008; ). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36, D13–D21.
    [Google Scholar]
  50. Whelan, S. & Goldman, N. ( 2001; ). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18, 691–699.[CrossRef]
    [Google Scholar]
  51. White, P. S., Morales, F. & Roossinck, M. J. ( 1995; ). Interspecific reassortment of genomic segments in the evolution of Cucumoviruses. Virology 207, 334–337.[CrossRef]
    [Google Scholar]
  52. Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. ( 2008; ). The deep archaeal roots of eukaryotes. Mol Biol Evol 25, 1619–1630.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.013086-0
Loading
/content/journal/jgv/10.1099/vir.0.013086-0
Loading

Data & Media loading...

Supplements

Capsid protein: [FASTA file](20 KB)

TEXT

Movement protein: [FASTA file](17 KB)

TEXT

RNA-dependent RNA polymerase: [FASTA file](41 KB)

TEXT

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error