1887

Abstract

Interaction studies have suggested that the non-structural protein encoded by open reading frame 3 (ORF3) of porcine circovirus type 2 (PCV2) binds specifically to a regulator of G protein signalling (RGS) related to human RGS16 (huRGS16). The full-length clone of RGS16 was generated from porcine cells and sequence analysis revealed a close relationship to huRGS16 and murine RGS16. pull-down experiments verified an interaction between porcine RGS16 (poRGS16) and ORF3 from PCV2. Using GST-linked ORF3 proteins from three different genogroups of PCV2 and from porcine circovirus type 1 (PCV1) in the pull-down experiments indicated that there were differences in their ability to bind poRGS16. Quantitative RT-PCR demonstrated that the expression of poRGS16 mRNA could be induced by a number of cell activators including mitogens (LPS and PHA), interferon inducers (ODN 2216 and poly I : C) and the neurotransmitter norepinephrine. Immunofluorescence labelling confirmed the induced expression of poRGS16 at the protein level and suggested that the PCV2 ORF3 protein co-localized with poRGS16 in LPS-activated porcine PBMC. Furthermore, poRGS16 appeared to participate in the translocation of the ORF3 protein into the cell nucleus, suggesting that the observed interaction may play an important role in the infection biology of porcine circovirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008896-0
2009-10-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2425.html?itemId=/content/journal/jgv/10.1099/vir.0.008896-0&mimeType=html&fmt=ahah

References

  1. Allan, G. M., Kennedy, S., McNeilly, F., Foster, J. C., Ellis, J. A., Krakowka, S. J., Meehan, B. M. & Adair, B. M. ( 1999; ). Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 121, 1–11.[CrossRef]
    [Google Scholar]
  2. Artursson, K., Lindersson, M., Varela, N., Scheynius, A. & Alm, G. V. ( 1995; ). Interferon-alpha production and tissue localization of interferon-alpha/beta producing cells after intradermal administration of Aujeszky's disease virus-infected cells in pigs. Scand J Immunol 41, 121–129.[CrossRef]
    [Google Scholar]
  3. Berg, M., Ehrenborg, C., Blomberg, J., Pipkorn, R. & Berg, A. L. ( 1998; ). Two domains of the Borna disease virus p40 protein are required for interaction with the p23 protein. J Gen Virol 79, 2957–2963.
    [Google Scholar]
  4. Biagini, P. ( 2004; ). Human circoviruses. Vet Microbiol 98, 95–101.[CrossRef]
    [Google Scholar]
  5. Carman, S., Cai, H. Y., DeLay, J., Youssef, S. A., McEwen, B. J., Gagnon, C. A., Tremblay, D., Hazlett, M., Lusis, P. & other authors ( 2008; ). The emergence of a new strain of porcine circovirus-2 in Ontario and Quebec swine and its association with severe porcine circovirus associated disease – 2004–2006. Can J Vet Res 72, 259–268.
    [Google Scholar]
  6. Chae, C. ( 2005; ). A review of porcine circovirus 2-associated syndromes and diseases. Vet J 169, 326–336.[CrossRef]
    [Google Scholar]
  7. Chang, H. W., Pang, V. F., Chen, L. J., Chia, M. Y., Tsai, Y. C. & Jeng, C. R. ( 2006; ). Bacterial lipopolysaccharide induces porcine circovirus type 2 replication in swine alveolar macrophages. Vet Microbiol 115, 311–319.[CrossRef]
    [Google Scholar]
  8. Chatterjee, T. K. & Fisher, R. A. ( 2000; ). Cytoplasmic, nuclear, and golgi localization of RGS proteins. Evidence for N-terminal and RGS domain sequences as intracellular targeting motifs. J Biol Chem 275, 24013–24021.[CrossRef]
    [Google Scholar]
  9. Chen, S. Y., Mao, S. P., Su, C. K., Wang, S. D. & Chai, C. Y. ( 2001; ). Activation of noradrenergic mechanism attenuates glutamate-induced vasopressor responses in the pons and medulla of cats in vivo. Prog Neuro-psychopharmacol Biol Psychiatry 25, 1063–1081.[CrossRef]
    [Google Scholar]
  10. Darwich, L., Segalés, J., Resendes, A., Balasch, M., Plana-Duran, J. & Mateu, E. ( 2008; ). Transient correlation between viremia levels and IL-10 expression in pigs subclinically infected with porcine circovirus type 2 (PCV2). Res Vet Sci 84, 194–198.[CrossRef]
    [Google Scholar]
  11. Dawson, P. A., Kelly, T. E. & Marini, J. C. ( 1999; ). Extension of phenotype associated with structural mutations in type I collagen: siblings with juvenile osteoporosis have an α2(I)Gly436→Arg substitution. J Bone Miner Res 14, 449–455.[CrossRef]
    [Google Scholar]
  12. de Groot, J., Ruis, M. A., Scholten, J. W., Koolhaas, J. M. & Boersma, W. J. ( 2001; ). Long-term effects of social stress on antiviral immunity in pigs. Physiol Behav 73, 145–158.[CrossRef]
    [Google Scholar]
  13. Duvigneau, J. C., Hartl, R. T., Groiss, S. & Gemeiner, M. ( 2005; ). Quantitative simultaneous multiplex real-time PCR for the detection of porcine cytokines. J Immunol Methods 306, 16–27.[CrossRef]
    [Google Scholar]
  14. Edfors-Lilja, I., Wattrang, E., Marklund, L., Moller, M., Andersson-Eklund, L., Andersson, L. & Fossum, C. ( 1998; ). Mapping quantitative trait loci for immune capacity in the pig. J Immunol 161, 829–835.
    [Google Scholar]
  15. Elenkov, I. J. & Chrousos, G. P. ( 2006; ). Stress system – organization, physiology and immunoregulation. Neuroimmunomodulation 13, 257–267.[CrossRef]
    [Google Scholar]
  16. Finsterbusch, T., Steinfeldt, T., Caliskan, R. & Mankertz, A. ( 2005; ). Analysis of the subcellular localization of the proteins Rep, Rep′ and Cap of porcine circovirus type 1. Virology 343, 36–46.[CrossRef]
    [Google Scholar]
  17. Finsterbusch, T., Steinfeldt, T., Doberstein, K., Rödner, C. & Mankertz, A. ( 2009; ). Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology 386, 122–131.[CrossRef]
    [Google Scholar]
  18. Gagnon, C. A., Tremblay, D., Tijssen, P., Venne, M. H., Houde, A. & Elahi, S. M. ( 2007; ). The emergence of porcine circovirus 2b genotype (PCV-2b) in swine in Canada. Can Vet J 48, 811–819.
    [Google Scholar]
  19. Goyarts, E., Matsui, M., Mammone, T., Bender, A. M., Wagner, J. A., Maes, D. & Granstein, R. D. ( 2008; ). Norepinephrine modulates human dendritic cell activation by altering cytokine release. Exp Dermatol 17, 188–196.[CrossRef]
    [Google Scholar]
  20. Harding, J. C. ( 2004; ). The clinical expression and emergence of porcine circovirus 2. Vet Microbiol 98, 131–135.[CrossRef]
    [Google Scholar]
  21. Heath, L., Williamson, A. L. & Rybicki, E. P. ( 2006; ). The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for transporting the replication-associated protein into the nucleus. J Virol 80, 7219–7225.[CrossRef]
    [Google Scholar]
  22. Heximer, S. P., Lim, H., Bernard, J. L. & Blumer, K. J. ( 2001; ). Mechanisms governing subcellular localization and function of human RGS2. J Biol Chem 276, 14195–14203.
    [Google Scholar]
  23. Hoffmann, M., Ward, R. J., Cavalli, A., Carr, I. C. & Milligan, G. ( 2001; ). Differential capacities of the RGS1, RGS16 and RGS-GAIP regulators of G protein signaling to enhance α2A-adrenoreceptor agonist-stimulated GTPase activity of G(o1)alpha. J Neurochem 78, 797–806.[CrossRef]
    [Google Scholar]
  24. Jaekal, J., Abraham, E., Azam, T., Netea, M. G., Dinarello, C. A., Lim, J. S., Yang, Y., Yoon, D. Y. & Kim, S. H. ( 2007; ). Individual LPS responsiveness depends on the variation of toll-like receptor (TLR) expression level. J Microbiol Biotechnol 17, 1862–1867.
    [Google Scholar]
  25. Jean-Baptiste, G., Yang, Z. & Greenwood, M. T. ( 2006; ). Regulatory mechanisms involved in modulating RGS function. Cell Mol Life Sci 63, 1969–1985.[CrossRef]
    [Google Scholar]
  26. Karuppannan, A. K., Jong, M. H., Lee, S.-H., Zhu, Y., Selvaraj, M., Lau, J., Jia, Q. & Kwang, J. ( 2009; ). Attenuation of porcine circovirus 2 in SPF piglets by abrogation of ORF3 function. Virology 383, 338–347.[CrossRef]
    [Google Scholar]
  27. Lippert, E., Yowe, D. L., Gonzalo, J. A., Justice, J. P., Webster, J. M., Fedyk, E. R., Hodge, M., Miller, C., Gutierrez-Ramos, J. C. & other authors ( 2003; ). Role of regulator of G protein signaling 16 in inflammation-induced T lymphocyte migration and activation. J Immunol 171, 1542–1555.[CrossRef]
    [Google Scholar]
  28. Liu, J., Chen, I. & Kwang, J. ( 2005; ). Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J Virol 79, 8262–8274.[CrossRef]
    [Google Scholar]
  29. Liu, J., Chen, I., Du, Q., Chua, H. & Kwang, J. ( 2006; ). The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J Virol 80, 5065–5073.[CrossRef]
    [Google Scholar]
  30. Liu, J., Zhu, Y., Chen, I., Lau, J., He, F., Lau, A., Wang, Z., Karuppannan, A. K. & Kwang, J. ( 2007; ). The ORF3 protein of porcine circovirus type 2 interacts with porcine ubiquitin E3 ligase Pirh2 and facilitates p53 expression in viral infection. J Virol 81, 9560–9567.[CrossRef]
    [Google Scholar]
  31. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−▵▵Ct method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  32. Meehan, B. M., McNeilly, F., Todd, D., Kennedy, S., Jewhurst, V. A., Ellis, J. A., Hassard, L. E., Clark, E. G., Haines, D. M. & Allan, G. M. ( 1998; ). Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol 79, 2171–2179.
    [Google Scholar]
  33. Meerts, P., Misinzo, G., McNeilly, F. & Nauwynck, H. J. ( 2005a; ). Replication kinetics of different porcine circovirus 2 strains in PK-15 cells, fetal cardiomyocytes and macrophages. Arch Virol 150, 427–441.[CrossRef]
    [Google Scholar]
  34. Meerts, P., Misinzo, G. & Nauwynck, H. J. ( 2005b; ). Enhancement of porcine circovirus 2 replication in porcine cell lines by IFN-γ before and after treatment and by IFN-α after treatment. J Interferon Cytokine Res 25, 684–693.[CrossRef]
    [Google Scholar]
  35. Olvera, A., Cortey, M. & Segalés, J. ( 2007; ). Molecular evolution of porcine circovirus type 2 genomes: phylogeny and clonality. Virology 357, 175–185.[CrossRef]
    [Google Scholar]
  36. Opriessnig, T., Meng, X. J. & Halbur, P. G. ( 2007; ). Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest 19, 591–615.[CrossRef]
    [Google Scholar]
  37. Perrier, P., Martinez, F. O., Locati, M., Bianchi, G., Nebuloni, M., Vago, G., Bazzoni, F., Sozzani, S., Allavena, P. & Mantovani, A. ( 2004; ). Distinct transcriptional programs activated by interleukin-10 with or without lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine ligand 13. J Immunol 172, 7031–7042.[CrossRef]
    [Google Scholar]
  38. Segalés, J., Rosell, C. & Domingo, M. ( 2004; ). Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol 98, 137–149.[CrossRef]
    [Google Scholar]
  39. Segalés, J., Allan, G. M. & Domingo, M. ( 2005; ). Porcine circovirus diseases. Anim Health Res Rev 6, 119–142.[CrossRef]
    [Google Scholar]
  40. Segalés, J., Olvera, A., Grau-Roma, L., Charreyre, C., Nauwynck, H., Larsen, L., Dupont, K., McCullough, K., Ellis, J. & other authors ( 2008; ). PCV-2 genotype definition and nomenclature. Vet Rec 162, 867–868.[CrossRef]
    [Google Scholar]
  41. Shi, G. X., Harrison, K., Han, S. B., Moratz, C. & Kehrl, J. H. ( 2004; ). Toll-like receptor signaling alters the expression of regulator of G protein signaling proteins in dendritic cells: implications for G protein-coupled receptor signaling. J Immunol 172, 5175–5184.[CrossRef]
    [Google Scholar]
  42. Timmusk, S., Fossum, C. & Berg, M. ( 2006; ). Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. J Gen Virol 87, 3215–3223.[CrossRef]
    [Google Scholar]
  43. Timmusk, S., Wallgren, P., Brunborg, I. M., Wikström, F. H., Allan, G., Meehan, B., McMenamy, M., McNeilly, F., Fuxler, L. & other authors ( 2008; ). Phylogenetic analysis of porcine circovirus type 2 (PCV2) pre- and post-epizootic postweaning multisystemic wasting syndrome (PMWS). Virus Genes 36, 509–520.[CrossRef]
    [Google Scholar]
  44. Todd, D., McNulty, M. S., Adair, B. M. & Allan, G. M. ( 2001; ). Animal circoviruses. Adv Virus Res 57, 1–70.
    [Google Scholar]
  45. Todd, D., Bendinelli, M., Biagini, P., Hino, S., Mankertz, A., Mishiro, S., Niel, C., Okamoto, H., Raidal, S. & other authors ( 2005; ). Circoviridae. In Virus Taxonomy, Eighth report of the International Committee on Taxonomy of Viruses, pp. 327–334. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego, CA: Elsevier.
  46. Uenishi, H. & Shinkai, H. ( 2008; ). Porcine toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev Comp Immunol 33, 353–361.
    [Google Scholar]
  47. Vincent, I. E., Carrasco, C. P., Herrmann, B., Meehan, B. M., Allan, G. M., Summerfield, A. & McCullough, K. C. ( 2003; ). Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 77, 13288–13300.[CrossRef]
    [Google Scholar]
  48. Vincent, I. E., Carrasco, C. P., Guzylack-Piriou, L., Herrmann, B., McNeilly, F., Allan, G. M., Summerfield, A. & McCullough, K. C. ( 2005; ). Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 115, 388–398.[CrossRef]
    [Google Scholar]
  49. Vincent, I. E., Balmelli, C., Meehan, B., Allan, G., Summerfield, A. & McCullough, K. C. ( 2007; ). Silencing of natural interferon producing cell activation by porcine circovirus type 2 DNA. Immunology 120, 47–56.
    [Google Scholar]
  50. Wikström, F. H., Meehan, B. M., Berg, M., Timmusk, S., Elving, J., Fuxler, L., Magnusson, M., Allan, G. M., McNeilly, F. & Fossum, C. ( 2007; ). Structure-dependent modulation of alpha interferon production by porcine circovirus 2 oligodeoxyribonucleotide and CpG DNAs in porcine peripheral blood mononuclear cells. J Virol 81, 4919–4927.[CrossRef]
    [Google Scholar]
  51. Xie, G. X. & Palmer, P. P. ( 2007; ). How regulators of G protein signaling achieve selective regulation. J Mol Biol 366, 349–365.[CrossRef]
    [Google Scholar]
  52. Zheng, H., Ye, L., Fang, X., Li, B., Wang, Y., Xiang, X., Kong, L., Wang, W., Zeng, Y. & other authors ( 2007; ). Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-κB pathways via interaction with IκB kinases. J Virol 81, 11917–11924.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008896-0
Loading
/content/journal/jgv/10.1099/vir.0.008896-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error