-
Volume 151,
Issue 2,
2005
Volume 151, Issue 2, 2005
- Pathogens And Pathogenicity
-
-
-
DNA base excision repair potentiates the protective effect of Salmonella Pathogenicity Island 2 within macrophages
More LessReactive oxidants are a primary weapon of the macrophage antibacterial arsenal. The ability of virulent Salmonella to repair oxidative DNA lesions via the base-excision repair system (BER) enables its survival and replication within the macrophage, but is not required for extracellular growth. Salmonella also inhibits the targeting of oxidant generators to the Salmonella-containing vacuole (SCV) via Salmonella Pathogenicity Island 2 (SPI2). Accordingly, the relative contributions of these two discrete systems to Salmonella resistance to both oxidative mutagenesis and lethality within RAW 264.7 macrophages were investigated. A mutant unable to initiate BER was constructed by deleting all three BER bifunctional glycosylases (Δfpg/nth/nei), and was significantly impaired for early intramacrophage survival. Mutations in various SPI2 effector (sifA and sseEFG) and structural (ssaV) genes were then analysed in the BER mutant background. Loss of SPI2 function alone appeared to increase macrophage-induced mutation. Statistical analyses of the reduced intramacrophage survival of SPI2 mutants and the corresponding SPI2/BER mutants indicated a synergistic interaction between BER and SPI2, suggesting that SPI2 promotes intramacrophage survival by protecting Salmonella DNA from exposure to macrophage oxidants. Furthermore, this protection may involve the SseF and SseG effectors. In contrast, the SifA effector did not seem to play a major role in oxidant protection. It is speculated that Salmonella initially stalls oxidative killing by preserving its genomic integrity through the function of BER, until it can upregulate SPI2 to limit its exposure to macrophage oxidants.
-
-
-
-
Bacillus cereus Fur regulates iron metabolism and is required for full virulence
More LessA homologue of the Bacillus subtilis fur gene was identified in Bacillus cereus and characterized. The predicted amino acid sequence of the cloned gene was found to be highly similar to other members of the Fur family of transcriptional regulators. The B. cereus fur gene was shown to partially complement an Escherichia coli fur mutant. Purified B. cereus Fur bound specifically to a 19 bp DNA sequence homologous to the B. subtilis Fur box in a metal-dependent manner. Analysis of the available B. cereus genome data identified a number of genes which contain predicted Fur box sequences in the promoter region. Many of these genes are predicted to play a role in bacterial iron uptake and metabolism, but several have also been implicated as having a role in virulence. Fur and iron regulation of a siderophore biosynthesis operon was confirmed in a β-galactosidase assay. A B. cereus fur null strain was constructed by allelic replacement of the chromosomal gene with a copy disrupted with a kanamycin resistance cassette. The Δfur mutant was found to constitutively express siderophores, to accumulate iron intracellularly to a level approximately threefold greater than the wild-type, and to be hypersensitive to hydrogen peroxide. In an insect infection model, the virulence of the fur null strain was found to be significantly attenuated, highlighting the essential role played by Fur in the virulence of this pathogen.
-
-
-
Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system
More LessMutations in rcsC that result in constitutive colanic acid capsule synthesis were obtained in Salmonella enterica serovar Typhimurium. Most rcsC alleles were dominant; however, recessive rcsC alleles were also found, in agreement with the postulated double role (positive and negative) of RcsC on the activation of the RcsB/C phosphorelay system. Salmonella rcsC mutants with constitutive activation of the Rcs system are severely attenuated for virulence in BALB/c mice and their degree of attenuation correlates with the level of Rcs activation. Partial relief of attenuation by a gmm mutation indicates that capsule overproduction is one of the factors leading to avirulence in constitutively activated rcsC mutants.
-
-
-
Functional analysis of secA homologues from rickettsiae
More LessThe molecular basis of protein secretion that underlines rickettsial pathogenesis remains unknown. This paper reports the molecular and functional analysis of the putative secA gene, an essential component of the Sec-dependent protein secretion pathway, from Rickettsia rickettsii and Rickettsia typhi, the aetiological agents of Rocky Mountain spotted fever and murine typhus, respectively. The sequence analysis of the cloned secA genes from R. rickettsii and R. typhi show ORFs of 2721 and 2718 nt, respectively. Alignment of the deduced amino acid sequences reveals the presence of highly conserved amino acid residues and motifs considered to be essential for the ATPase activity of SecA in preprotein translocation. Transcription analysis indicates that R. rickettsii secA is expressed monocistronically from the canonical prokaryotic promoter, with a transcriptional start point located 32 nt upstream of the secA initiation codon. Complementation analysis shows that the full-length SecA protein from R. rickettsii and R. typhi fails to restore growth of the temperature-sensitive Escherichia coli strain MM52 secA51(ts) at a non-permissive temperature (42 °C), despite the detection of SecA protein expression by Western blotting. However, the chimeric SecA protein carrying the N-terminal 408 aa of R. rickettsii SecA fused with the C-terminal 480 aa of E. coli SecA restores the growth of E. coli strain MM52 secA51(ts) at the non-permissive temperature (42 °C). These results suggest that the N-terminal ATPase domain is highly conserved, whereas the C-terminal domain appears to be species specific.
-
- Physiology
-
-
-
Genetic and physiological analysis of the major OxyR-regulated katA from Xanthomonas campestris pv. phaseoli
katA encodes the major catalase that accounts for 90 % of the total catalase activity present in Xanthomonas campestris pv. phaseoli. katA is located upstream of an ORF designated ankA encoding a cytoplasmic membrane protein homologous to eukaryotic ankyrin. Transcriptional analysis of katA and ankA identified two katA transcripts: a major monocistronic katA transcript and a minor bicistronic katA–ankA transcript. KatA expression was induced in the presence of various oxidants including H2O2, organic hydroperoxides and the superoxide-generating agent menadione, in an OxyR-dependent manner. Analysis of the katA promoter region showed a putative OxyR binding site located upstream of an Escherichia coli-like σ 70 −35 region that is likely to be responsible for transcription activation in response to oxidant treatment. Gel mobility shift experiments confirmed that purified OxyR specifically binds to the katA promoter. A katA mutant was highly sensitive to H2O2 during both the exponential and stationary phases of growth. This phenotype could be complemented by functional katA, confirming the essential role of the gene in protecting X. campestris from H2O2 toxicity. Unexpectedly, inactivation of ankA also significantly reduced resistance to H2O2 and the phenotype could be complemented by plasmid-borne expression of ankA. Physiological analyses showed that katA plays an important role in, but is not solely responsible for, both the adaptive and menadione-induced cross-protective responses to H2O2 killing in X. campestris.
-
-
-
-
Maintenance of ΔpH by a butanol-tolerant mutant of Clostridium beijerinckii
More LessThe isolation of Clostridium beijerinckii mutants that are more tolerant of butanol than the wild-type offered the opportunity to investigate whether the membrane activities which are required for maintaining the transmembrane ΔpH (the difference in pH between the cellular interior and exterior) are sensitive targets of butanol toxicity. The ΔpH was measured by the accumulation of [14C]benzoate using late-exponential-phase cells which were suspended in citrate/phosphate buffer at pH 5 (to maximize the ΔpH component of the protonmotive force) and supplemented with glucose and Mg2+. The ΔpH of the butanol-tolerant tolerant mutant, strain BR54, of C. beijerinckii NCIMB 8052 was found to be significantly more tolerant of added butanol than the wild-type. Thus, in potassium citrate/phosphate buffer the mutant cells maintained a ΔpH of 1·4 when butanol was added to a concentration of 1·5 % (w/v), while the wild-type ΔpH was reduced to 0·1. The ΔpH of both strains was completely dissipated with 1·75 % butanol, an effect attributed to a chaotropic effect on the membrane phospholipids. Similar results were obtained in sodium citrate/phosphate buffer. In the absence of added Mg2+, the ΔpH of the mutant decreased in both sodium and potassium citrate/phosphate buffer, but more rapidly in the former. Interestingly, the addition of butanol at low concentrations (0·8 %) prevented this ΔpH dissipation, but only in cells suspended in sodium citrate/phosphate buffer, and not in potassium citrate/phosphate buffer. In wild-type cells the decrease in ΔpH occurred more slowly than in the mutant, and sparing of the ΔpH by 0·8 % butanol was less pronounced. The authors interpret these data to mean that the ΔpH is dissipated in the absence of Mg2+ by a Na+- or K+-linked process, possibly by a Na+/H+ or a K+/H+ antiporter, and that the former is inhibited by butanol. Apparently, butanol can selectively affect a membrane-associated function at concentrations lower than required for the complete dissipation of transmembrane ion gradients. Additionally, since the butanol-tolerant mutant BR54 is deficient in the ability to detoxify methylglyoxal (MG) and contains higher levels of MG than the wild-type, the higher Na+/H+ antiporter activity of the mutant may be due to the greater degree of protein glycation by MG in the mutant cells. The mechanism of butanol tolerance may be an indirect result of the elevated glycation of cell proteins in the mutant strain. Analysis of membrane protein fractions revealed that mutant cells contained significantly lower levels of unmodified arginine residues than those of the wild-type cells, and that unmodified arginine residues of the wild-type were decreased by exposure of the growing cells to added MG.
-
-
-
Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain α-keto acid dehydrogenase
More LessBranched-chain fatty acids (BCFAs) typically constitute more than 90 % of the fatty acids of Listeria monocytogenes. The authors have previously described two Tn917-induced, cold-sensitive, BCFA-deficient (<40 %) L. monocytogenes mutants (cld-1 and cld-2) with lowered membrane fluidity. Sequence analyses revealed that Tn917 was inserted into different genes of the branched-chain α-keto acid dehydrogenase cluster (bkd) in these two mutants. The cold-sensitivity and BCFA deficiency of cld-1, in which Tn917 was inserted into bkdB, were complemented in trans by cloned bkdB. The growth and corresponding BCFA content of the mutants at 37 °C were stimulated by fatty acid precursors bypassing Bkd, 2-methylbutyrate (precursor for odd-numbered anteiso-fatty acids), isobutyrate (precursor for even-numbered iso-fatty acids) and isovalerate (precursor for odd-numbered iso-fatty acids). In contrast, the corresponding Bkd substrates, α-ketomethylvalerate, α-ketoisovalerate and α-ketoisocaproate, exhibited much poorer activity. At 26 °C, 2-methylbutyrate and isovalerate stimulated the growth of the mutants, and at 10 °C, only 2-methylbutyrate stimulated growth. Pyruvate depressed the BCFA content of cld-2 from 33 % to 27 %, which may be close to the minimum BCFA requirement for L. monocytogenes. The transcription of bkd was enhanced by Bkd substrates, but not by low temperature. When provided with the BCFA precursors, cld-2 was able to increase its anteiso-C15 : 0 fatty acid content at 10 °C compared to 37 °C, which is the characteristic response of L. monocytogenes to low temperature. This implies that Bkd is not the major cold-regulation point of BCFA synthesis.
-
-
-
The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated
More LessStreptococcus mutans is the primary odontopathogen present in supragingival plaque and causes the oral disease known as dental caries. Colonization of the oral cavity by S. mutans requires the bacteria to adhere to the tooth surface and occurs by both sucrose-dependent and -independent mechanisms. Sucrose-independent adhesion of S. mutans in vitro has been shown to involve an ORF (ORF0317) encoding a homologue (39 %) to LytR, a regulator of autolysin activity in Bacillus subtilis. The protein encoded by ORF0317, LytR, belongs to the LytR/CpsA/Psr protein family. This family has a putative role in cell-wall structural maintenance, possibly through autolysin regulation. Autolysins have also been shown to be important in surface adhesion in Lactococcus lactis and in the pathogenic properties of Streptococcus pneumoniae. To investigate the role of autolysins in the adhesion and pathogenesis of S. mutans, a LytR mutant was constructed. The mutant grows in long chains, which may indicate a defect in cell division. Further experiments with the mutant strain show increased autolytic activity, indicating that LytR attenuates S. mutans autolytic activity, possibly through regulation of the expression of autolytic enzymes. No defect in cell-to-surface adherence or biofilm growth was seen in the LytR mutant. However, a connection between cell growth phase and transcription of lytR was found.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
