1887

Abstract

is the primary odontopathogen present in supragingival plaque and causes the oral disease known as dental caries. Colonization of the oral cavity by requires the bacteria to adhere to the tooth surface and occurs by both sucrose-dependent and -independent mechanisms. Sucrose-independent adhesion of has been shown to involve an ORF (ORF0317) encoding a homologue (39 %) to LytR, a regulator of autolysin activity in . The protein encoded by ORF0317, LytR, belongs to the LytR/CpsA/Psr protein family. This family has a putative role in cell-wall structural maintenance, possibly through autolysin regulation. Autolysins have also been shown to be important in surface adhesion in and in the pathogenic properties of . To investigate the role of autolysins in the adhesion and pathogenesis of , a LytR mutant was constructed. The mutant grows in long chains, which may indicate a defect in cell division. Further experiments with the mutant strain show increased autolytic activity, indicating that LytR attenuates autolytic activity, possibly through regulation of the expression of autolytic enzymes. No defect in cell-to-surface adherence or biofilm growth was seen in the LytR mutant. However, a connection between cell growth phase and transcription of was found.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27604-0
2005-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510625.html?itemId=/content/journal/micro/10.1099/mic.0.27604-0&mimeType=html&fmt=ahah

References

  1. Ajdic D., McShan W. M., McLaughlin R. E. 16 other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef]
    [Google Scholar]
  2. Aoki H., Shiroza T., Hayakawa M., Sato S., Kuramitsu H. K. 1986; Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun 53:587–594
    [Google Scholar]
  3. Brunskill E. W., Bayles K. W. 1996; Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol 178:611–618
    [Google Scholar]
  4. Clark W. B., Gibbons R. J. 1977; Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect Immun 18:514–523
    [Google Scholar]
  5. Clark W. B., Bammann L. L., Gibbons R. J. 1978; Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun 19:846–853
    [Google Scholar]
  6. Cornett J. B., Shockman G. D. 1978; Cellular lysis of Streptococcus faecalis induced with Triton X-100. J Bacteriol 135:153–160
    [Google Scholar]
  7. Davey M. E., O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 [CrossRef]
    [Google Scholar]
  8. Fujimoto D. F., Brunskill E. W., Bayles K. W. 2000; Analysis of genetic elements controlling Staphylococcus aureus lrgAB expression: potential role of DNA topology in SarA regulation. J Bacteriol 182:4822–4828 [CrossRef]
    [Google Scholar]
  9. Goodman H., Pollock J. J., Iacono V. J., Wong W., Shockman G. D. 1981a; Peptidoglycan loss during hen egg white lysozyme-inorganic salt lysis of Streptococcus mutans . J Bacteriol 146:755–763
    [Google Scholar]
  10. Goodman H., Pollock J. J., Katona L. I., Iacono V. J., Cho M. I., Thomas E. 1981b; Lysis of Streptococcus mutans by hen egg white lysozyme and inorganic sodium salts. J Bacteriol 146:764–774
    [Google Scholar]
  11. Groicher K. H., Firek B. A., Fujimoto D. F., Bayles K. W. 2000; The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 182:1794–1801 [CrossRef]
    [Google Scholar]
  12. Hamada S., Torii M., Kotani S., Masuda N., Ooshima T., Yokogawa K., Kawata S. 1978; Lysis of Streptococcus mutans cells with mutanolysin, a lytic enzyme prepared from a culture liquor of Streptomyces globisporus 1829. Arch Oral Biol 23:543–549 [CrossRef]
    [Google Scholar]
  13. Heilmann C., Hussain M., Peters G., Gotz F. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024 [CrossRef]
    [Google Scholar]
  14. Huard C., Miranda G., Wessner F., Bolotin A., Hansen J., Foster S. J., Chapot-Chartier M. P. 2003; Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis . Microbiology 149:695–705 [CrossRef]
    [Google Scholar]
  15. Iacono V. J., Byrnes T. P., Crawford I. T., Grossbard B. L., Pollock J. J., MacKay B. J. 1985; Lysozyme-mediated de-chaining of Streptococcus mutans and its antibacterial significance in an acidic environment. J Dent Res 64:48–53 [CrossRef]
    [Google Scholar]
  16. Koo H., Pearson S. K., Scott-Anne K., Abranches J., Cury J. A., Rosalen P. L., Park Y. K., Marquis R. E., Bowen W. H. 2002; Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. Oral Microbiol Immunol 17:337–343 [CrossRef]
    [Google Scholar]
  17. Koo H., Hayacibara M. F., Schobel B. D., Cury J. A., Rosalen P. L., Park Y. K., Vacca-Smith A. M., Bowen W. H. 2003; Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52:782–789 [CrossRef]
    [Google Scholar]
  18. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [CrossRef]
    [Google Scholar]
  19. Kuhnert W. L., Quivey R. G Jr. 2003; Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904. J Bacteriol 185:1525–1533 [CrossRef]
    [Google Scholar]
  20. Kuramitsu H. K. 2001; Virulence properties of oral bacteria: impact of molecular biology. Curr Issues Mol Biol 3:35–36
    [Google Scholar]
  21. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961 [CrossRef]
    [Google Scholar]
  22. Li Y. H., Tang N., Aspiras M. B., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G. 2002; A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708 [CrossRef]
    [Google Scholar]
  23. Mercier C., Durrieu C., Briandet R., Domakova E., Tremblay J., Buist G., Kulakauskas S. 2002; Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol Microbiol 46:235–243 [CrossRef]
    [Google Scholar]
  24. Murchison H. H., Barrett J. F., Cardineau G. A., Curtiss R. 3rd (1986; Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun 54:273–282
    [Google Scholar]
  25. Rossi J., Bischoff M., Wada A., Berger-Bachi B. 2003; MsrR, a putative cell envelope-associated element involved in Staphylococcus aureus sarA attenuation. Antimicrob Agents Chemother 47:2558–2564 [CrossRef]
    [Google Scholar]
  26. Sapunaric F., Franssen C., Stefanic P., Amoroso A., Dardenne O., Coyette J. 2003; Redefining the role of psr in beta-lactam resistance and cell autolysis of Enterococcus hirae . J Bacteriol 185:5925–5935 [CrossRef]
    [Google Scholar]
  27. Sauer K., Camper A. K. 2001; Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579–6589 [CrossRef]
    [Google Scholar]
  28. Schilling K. M., Bowen W. H. 1992; Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect Immun 60:284–295
    [Google Scholar]
  29. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  30. Svensater G., Welin J., Wilkins J. C., Beighton D., Hamilton I. R. 2001; Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 205:139–146 [CrossRef]
    [Google Scholar]
  31. Wen Z. T., Burne R. A. 2002; Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68:1196–1203 [CrossRef]
    [Google Scholar]
  32. Wen Z. T., Burne R. A. 2004; LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682–2691 [CrossRef]
    [Google Scholar]
  33. Yokogawa K., Kawata S., Nishimura S., Ikeda Y., Yoshimura Y. 1974; Mutanolysin, bacteriolytic agent for cariogenic streptococci: partial purification and properties. Antimicrob Agents Chemother 6:156–165 [CrossRef]
    [Google Scholar]
  34. Yoshida A., Kuramitsu H. K. 2002; Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68:6283–6291 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27604-0
Loading
/content/journal/micro/10.1099/mic.0.27604-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error