1887

Abstract

Branched-chain fatty acids (BCFAs) typically constitute more than 90 % of the fatty acids of . The authors have previously described two Tn-induced, cold-sensitive, BCFA-deficient (<40 %) mutants ( and ) with lowered membrane fluidity. Sequence analyses revealed that Tn was inserted into different genes of the branched-chain -keto acid dehydrogenase cluster () in these two mutants. The cold-sensitivity and BCFA deficiency of , in which Tn was inserted into , were complemented by cloned . The growth and corresponding BCFA content of the mutants at 37 °C were stimulated by fatty acid precursors bypassing Bkd, 2-methylbutyrate (precursor for odd-numbered anteiso-fatty acids), isobutyrate (precursor for even-numbered iso-fatty acids) and isovalerate (precursor for odd-numbered iso-fatty acids). In contrast, the corresponding Bkd substrates, -ketomethylvalerate, -ketoisovalerate and -ketoisocaproate, exhibited much poorer activity. At 26 °C, 2-methylbutyrate and isovalerate stimulated the growth of the mutants, and at 10 °C, only 2-methylbutyrate stimulated growth. Pyruvate depressed the BCFA content of from 33 % to 27 %, which may be close to the minimum BCFA requirement for . The transcription of was enhanced by Bkd substrates, but not by low temperature. When provided with the BCFA precursors, was able to increase its anteiso-C fatty acid content at 10 °C compared to 37 °C, which is the characteristic response of to low temperature. This implies that Bkd is not the major cold-regulation point of BCFA synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27634-0
2005-02-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510615.html?itemId=/content/journal/micro/10.1099/mic.0.27634-0&mimeType=html&fmt=ahah

References

  1. Annous, B. A., Becker, L. A., Bayles, D. O., Labeda, D. P. & Wilkinson, B. J. ( 1997; ). Critical role of anteiso-C15 : 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63, 3887–3894.
    [Google Scholar]
  2. Bayles, D. O., Annous, B. A. & Wilkinson, B. J. ( 1996; ). Cold-stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl Environ Microbiol 62, 1116–1119.
    [Google Scholar]
  3. Bryan, F. L. ( 2004; ). The “danger zone” reevaluated. Food Safety Mag 10, 55–69.
    [Google Scholar]
  4. Burns, G., Brown, T., Hatter, K. & Sokatch, J. R. ( 1989; ). Sequence analysis of the lpdV gene for lipoamide dehydrogenase of branched-chain-oxoacid dehydrogenase of Pseudomonas putida. Eur J Biochem 179, 61–69.[CrossRef]
    [Google Scholar]
  5. Camilli, A., Portnoy, D. A. & Youngman, P. ( 1990; ). Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol 172, 3738–3744.
    [Google Scholar]
  6. Choi, K., Heath, R. J. & Rock, C. O. ( 2000; ). β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in BCFA biosynthesis. J Bacteriol 182, 365–370.[CrossRef]
    [Google Scholar]
  7. Debarbouille, M., Gardan, R., Arnaud, M. & Rapoport, G. ( 1999; ). Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 181, 2059–2066.
    [Google Scholar]
  8. de Mendoza, D., Schujman, G. E. & Aguilar, P. S. ( 2002; ). Biosynthesis and function of membrane lipids. In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 43–55. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  9. Edgcomb, M. R., Sirimanne, S., Wilkinson, B. J., Drouin, P. & Morse, R. P. D., II ( 2000; ). Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. Biochim Biophys Acta 1463, 31–42.[CrossRef]
    [Google Scholar]
  10. Glaser, P., Frangeul, L., Buchrieser, C. & 53 other authors ( 2001; ). Comparative genomics of Listeria species. Science 294, 849–852.
    [Google Scholar]
  11. Jones, S. L., Drouin, P., Wilkinson, B. J. & Morse, P. D., II ( 2002; ). Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Arch Microbiol 177, 217–222.[CrossRef]
    [Google Scholar]
  12. Kaneda, T. ( 1991; ). Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55, 288–302.
    [Google Scholar]
  13. Lu, Y. J., Zhang, Y. M. & Rock, C. O. ( 2004; ). Product diversity and regulation of type II fatty acid synthases. Biochem Cell Biol 82, 145–155.[CrossRef]
    [Google Scholar]
  14. Mead, P. S., Slutsker, L., Dietz, V., McCaig, F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  15. Nelson, K. E., Fouts, D. E., Mongodin, E. F. & 30 other authors ( 2004; ). Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32, 2386–2395.[CrossRef]
    [Google Scholar]
  16. Nichols, D. S., Presser, K. A., Olley, J., Ross, T. & McMeekin, T. A. ( 2002; ). Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Appl Environ Microbiol 68, 2809–2813.[CrossRef]
    [Google Scholar]
  17. Nunn, W. D., Giffin, K., Clark, D. & Cronan, J. E., Jr ( 1983; ). Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol 154, 554–560.
    [Google Scholar]
  18. Oku, H. & Kaneda, T. ( 1988; ). Biosynthesis of branched-chain fatty acids in Bacillus subtilis. J Biol Chem 263, 18386–18396.
    [Google Scholar]
  19. Panoff, J., Thammavongs, B., Gueguen, M. & Boutibonnes, P. ( 1998; ). Cold-stress response in mesophilic bacteria. Cryobiology 36, 75–83.[CrossRef]
    [Google Scholar]
  20. Park, S. F. & Stewart, S. A. B. ( 1990; ). High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94, 129–132.[CrossRef]
    [Google Scholar]
  21. Rock, C. O. & Jackowski, S. ( 1985; ). Pathway for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli. J Biol Chem 260, 12720–12724.
    [Google Scholar]
  22. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Smith, K. & Youngman, P. ( 1992; ). Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74, 705–711.[CrossRef]
    [Google Scholar]
  24. Suutari, M. & Laakso, S. ( 1994; ). Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20, 285–328.[CrossRef]
    [Google Scholar]
  25. Toal, D. R., Clifton, S. W., Roe, B. A. & Downard, J. ( 1995; ). The esg locus of Myxococcus xanthus encodes the E1a and E1b subunits of a branched chain keto acid dehydrogenase. Mol Microbiol 16, 177–189.[CrossRef]
    [Google Scholar]
  26. Wang, G., Kuriki, T., Roy, K. L. & Kaneda, T. ( 1993; ). The primary structure of branched-chain α-oxo acid dehydrogenase from Bacillus subtilis and its similarity to other α-oxo acid dehydrogenases. Eur J Biochem 213, 1091–1099.[CrossRef]
    [Google Scholar]
  27. Ward, D. E., Ross, R. P., Weijden, C. C., Snoep, J. L. & Claiborne, A. ( 1999; ). Catabolism of branched-chain α-keto acids in Enterococcus faecalis: the bkd gene cluster, enzymes, and metabolic route. J Bacteriol 181, 5433–5441.
    [Google Scholar]
  28. Ward, D. E., Weijden, C. C., Merwe, M. J., Westerhoff, H. V., Claiborne, A. & Snoep, J. L. ( 2000; ). Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a new, secreted metabolite serving as a temporary redox sink. J Bacteriol 182, 3239–3246.[CrossRef]
    [Google Scholar]
  29. Weber, M. H. W. & Marahiel, M. A. ( 2002; ). Coping with the cold: the cold-shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci 357, 895–907.[CrossRef]
    [Google Scholar]
  30. Willecke, K. & Pardee, A. ( 1971; ). Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain α-keto acid dehydrogenase. J Biol Chem 246, 5264–5272.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27634-0
Loading
/content/journal/micro/10.1099/mic.0.27634-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error