1887

Abstract

Branched-chain fatty acids (BCFAs) typically constitute more than 90 % of the fatty acids of . The authors have previously described two Tn-induced, cold-sensitive, BCFA-deficient (<40 %) mutants ( and ) with lowered membrane fluidity. Sequence analyses revealed that Tn was inserted into different genes of the branched-chain -keto acid dehydrogenase cluster () in these two mutants. The cold-sensitivity and BCFA deficiency of , in which Tn was inserted into , were complemented by cloned . The growth and corresponding BCFA content of the mutants at 37 °C were stimulated by fatty acid precursors bypassing Bkd, 2-methylbutyrate (precursor for odd-numbered anteiso-fatty acids), isobutyrate (precursor for even-numbered iso-fatty acids) and isovalerate (precursor for odd-numbered iso-fatty acids). In contrast, the corresponding Bkd substrates, -ketomethylvalerate, -ketoisovalerate and -ketoisocaproate, exhibited much poorer activity. At 26 °C, 2-methylbutyrate and isovalerate stimulated the growth of the mutants, and at 10 °C, only 2-methylbutyrate stimulated growth. Pyruvate depressed the BCFA content of from 33 % to 27 %, which may be close to the minimum BCFA requirement for . The transcription of was enhanced by Bkd substrates, but not by low temperature. When provided with the BCFA precursors, was able to increase its anteiso-C fatty acid content at 10 °C compared to 37 °C, which is the characteristic response of to low temperature. This implies that Bkd is not the major cold-regulation point of BCFA synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27634-0
2005-02-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510615.html?itemId=/content/journal/micro/10.1099/mic.0.27634-0&mimeType=html&fmt=ahah

References

  1. Annous B. A., Becker L. A., Bayles D. O., Labeda D. P., Wilkinson B. J. 1997; Critical role of anteiso-C15 : 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol63:3887–3894
    [Google Scholar]
  2. Bayles D. O., Annous B. A., Wilkinson B. J. 1996; Cold-stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl Environ Microbiol62:1116–1119
    [Google Scholar]
  3. Bryan F. L. 2004; The “danger zone” reevaluated. Food Safety Mag10:55–69
    [Google Scholar]
  4. Burns G., Brown T., Hatter K., Sokatch J. R. 1989; Sequence analysis of the lpdV gene for lipoamide dehydrogenase of branched-chain-oxoacid dehydrogenase ofPseudomonas putida. Eur J Biochem179:61–69[CrossRef]
    [Google Scholar]
  5. Camilli A., Portnoy D. A., Youngman P. 1990; Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol172:3738–3744
    [Google Scholar]
  6. Choi K., Heath R. J., Rock C. O. 2000; β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in BCFA biosynthesis. J Bacteriol182:365–370[CrossRef]
    [Google Scholar]
  7. Debarbouille M., Gardan R., Arnaud M., Rapoport G. 1999; Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol181:2059–2066
    [Google Scholar]
  8. de Mendoza D., Schujman G. E., Aguilar P. S. 2002; Biosynthesis and function of membrane lipids. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp43–55 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Edgcomb M. R., Sirimanne S., Wilkinson B. J., Drouin P., Morse R. P. D. II. 2000; Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. Biochim Biophys Acta1463:31–42[CrossRef]
    [Google Scholar]
  10. Glaser P., Frangeul L., Buchrieser C. & 53 other authors. 2001; Comparative genomics of Listeria species. Science294:849–852
    [Google Scholar]
  11. Jones S. L., Drouin P., Wilkinson B. J., Morse P. D. II. 2002; Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Arch Microbiol177:217–222[CrossRef]
    [Google Scholar]
  12. Kaneda T. 1991; Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev55:288–302
    [Google Scholar]
  13. Lu Y. J., Zhang Y. M., Rock C. O. 2004; Product diversity and regulation of type II fatty acid synthases. Biochem Cell Biol82:145–155[CrossRef]
    [Google Scholar]
  14. Mead P. S., Slutsker L., Dietz V., McCaig F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis5:607–625[CrossRef]
    [Google Scholar]
  15. Nelson K. E., Fouts D. E., Mongodin E. F. & 30 other authors. 2004; Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res32:2386–2395[CrossRef]
    [Google Scholar]
  16. Nichols D. S., Presser K. A., Olley J., Ross T., McMeekin T. A. 2002; Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Appl Environ Microbiol68:2809–2813[CrossRef]
    [Google Scholar]
  17. Nunn W. D., Giffin K., Clark D., Cronan J. E. Jr. 1983; Role for fadR in unsaturated fatty acid biosynthesis inEscherichia coli. J Bacteriol154:554–560
    [Google Scholar]
  18. Oku H., Kaneda T. 1988; Biosynthesis of branched-chain fatty acids in Bacillus subtilis. J Biol Chem263:18386–18396
    [Google Scholar]
  19. Panoff J., Thammavongs B., Gueguen M., Boutibonnes P. 1998; Cold-stress response in mesophilic bacteria. Cryobiology36:75–83[CrossRef]
    [Google Scholar]
  20. Park S. F., Stewart S. A. B. 1990; High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene94:129–132[CrossRef]
    [Google Scholar]
  21. Rock C. O., Jackowski S. 1985; Pathway for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli. J Biol Chem260:12720–12724
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Smith K., Youngman P. 1992; Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilisspoIIM gene. Biochimie74:705–711[CrossRef]
    [Google Scholar]
  24. Suutari M., Laakso S. 1994; Microbial fatty acids and thermal adaptation. Crit Rev Microbiol20:285–328[CrossRef]
    [Google Scholar]
  25. Toal D. R., Clifton S. W., Roe B. A., Downard J. 1995; The esg locus of Myxococcus xanthus encodes the E1a and E1b subunits of a branched chain keto acid dehydrogenase. Mol Microbiol16:177–189[CrossRef]
    [Google Scholar]
  26. Wang G., Kuriki T., Roy K. L., Kaneda T. 1993; The primary structure of branched-chain α-oxo acid dehydrogenase from Bacillus subtilis and its similarity to other α-oxo acid dehydrogenases. Eur J Biochem213:1091–1099[CrossRef]
    [Google Scholar]
  27. Ward D. E., Ross R. P., Weijden C. C., Snoep J. L., Claiborne A. 1999; Catabolism of branched-chain α-keto acids in Enterococcus faecalis: the bkd gene cluster, enzymes, and metabolic route. J Bacteriol181:5433–5441
    [Google Scholar]
  28. Ward D. E., Weijden C. C., Merwe M. J., Westerhoff H. V., Claiborne A., Snoep J. L. 2000; Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a new, secreted metabolite serving as a temporary redox sink. J Bacteriol182:3239–3246[CrossRef]
    [Google Scholar]
  29. Weber M. H. W., Marahiel M. A. 2002; Coping with the cold: the cold-shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci357:895–907[CrossRef]
    [Google Scholar]
  30. Willecke K., Pardee A. 1971; Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain α-keto acid dehydrogenase. J Biol Chem246:5264–5272
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27634-0
Loading
/content/journal/micro/10.1099/mic.0.27634-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error