1887

Abstract

A homologue of the gene was identified in and characterized. The predicted amino acid sequence of the cloned gene was found to be highly similar to other members of the Fur family of transcriptional regulators. The gene was shown to partially complement an mutant. Purified Fur bound specifically to a 19 bp DNA sequence homologous to the Fur box in a metal-dependent manner. Analysis of the available genome data identified a number of genes which contain predicted Fur box sequences in the promoter region. Many of these genes are predicted to play a role in bacterial iron uptake and metabolism, but several have also been implicated as having a role in virulence. Fur and iron regulation of a siderophore biosynthesis operon was confirmed in a -galactosidase assay. A null strain was constructed by allelic replacement of the chromosomal gene with a copy disrupted with a kanamycin resistance cassette. The Δ mutant was found to constitutively express siderophores, to accumulate iron intracellularly to a level approximately threefold greater than the wild-type, and to be hypersensitive to hydrogen peroxide. In an insect infection model, the virulence of the null strain was found to be significantly attenuated, highlighting the essential role played by Fur in the virulence of this pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27744-0
2005-02-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510569.html?itemId=/content/journal/micro/10.1099/mic.0.27744-0&mimeType=html&fmt=ahah

References

  1. Agaisse, H. & Lereclus, D. ( 1994; ). Structural and functional analysis of the promoter region involved in the full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol Microbiol 13, 97–107.[CrossRef]
    [Google Scholar]
  2. Agaisse, H., Gominet, M., Okstad, O. A., Kolsto, A. B. & Lereclus, D. ( 1999; ). PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32, 1043–1053.[CrossRef]
    [Google Scholar]
  3. Badger, J. L. & Kim, K. S. ( 1998; ). Environmental growth conditions influence the ability of Escherichia coli K1 to invade brain microvascular endothelial cells and confer serum resistance. Infect Immun 66, 5692–5697.
    [Google Scholar]
  4. Baichoo, N., Wang, T., Ye, R. & Helmann, J. D. ( 2002; ). Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45, 1613–1629.[CrossRef]
    [Google Scholar]
  5. Bone, E. J. & Ellar, D. J. ( 1989; ). Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett 49, 171–177.
    [Google Scholar]
  6. Brennan, M., Thomas, D. Y., Whiteway, M. & Kavanagh, K. ( 2002; ). Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34, 153–157.[CrossRef]
    [Google Scholar]
  7. Bsat, N. & Helmann, J. D. ( 1999; ). Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol 181, 4299–4307.
    [Google Scholar]
  8. Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P. & Helmann, J. D. ( 1998; ). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29, 189–198.[CrossRef]
    [Google Scholar]
  9. Chen, L., James, L. P. & Helmann, J. D. ( 1993; ). Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol 175, 5428–5437.
    [Google Scholar]
  10. Finney, D. J. ( 1952; ). Probit Analysis. Cambridge: Cambridge University Press.
  11. Forbes, J. R. & Gros, P. ( 2001; ). Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9, 397–403.[CrossRef]
    [Google Scholar]
  12. Franza, T., Sauvage, C. & Expert, D. ( 1999; ). Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein. Mol Plant–Microbe Interact 12, 119–128.[CrossRef]
    [Google Scholar]
  13. Geyid, A., Fletcher, J., Gashe, B. A. & Ljungh, A. ( 1996; ). Invasion of tissue culture cells by diarrhoeagenic strains of Escherichia coli which lack the enteroinvasive inv gene. FEMS Immunol Med Microbiol 14, 15–24.[CrossRef]
    [Google Scholar]
  14. Gohar, M., Okstad, O. A., Gilois, N., Sanchis, V., Kolsto, A. B. & Lereclus, D. ( 2002; ). Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2, 784–791.[CrossRef]
    [Google Scholar]
  15. Grifantini, R., Sebastian, S., Frigimelica, E., Draghi, M., Bartolini, E., Muzzi, A., Rappuoli, R., Grandi, G. & Genco, C. A. ( 2003; ). Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci U S A 100, 9542–9547.[CrossRef]
    [Google Scholar]
  16. Hall, H. K. & Foster, J. W. ( 1996; ). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178, 5683–5691.
    [Google Scholar]
  17. Hantke, K. ( 1987; ). Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: fur not only affects iron metabolism. Mol Gen Genet 210, 135–139.[CrossRef]
    [Google Scholar]
  18. Hantke, K. & Braun, V. ( 2000; ). The art of keeping low and high iron concentrations in balance. In Bacterial Stress Responses, pp. 275–288. Edited by G. Hengge-Aronis & R. Storz. Washington, DC: American Society for Microbiology.
  19. Helgason, E., Okstad, O. A., Caugant, D. A., Johansen, H. A., Fouet, A., Mock, M., Hegna, I. & Kolsto, A. B. ( 2000; ). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66, 2627–2630.[CrossRef]
    [Google Scholar]
  20. Herbig, A. F. & Helmann, J. D. ( 2002; ). Metal ion uptake and oxidative stress. In Bacillus subtilis and its Closest Relatives, pp. 405–414. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  21. Horsburgh, M. J., Ingham, E. & Foster, S. J. ( 2001a; ). In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183, 468–475.[CrossRef]
    [Google Scholar]
  22. Horsburgh, M. J., Clements, M. O., Crossley, H., Ingham, E. & Foster, S. J. ( 2001b; ). PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69, 3744–3754.[CrossRef]
    [Google Scholar]
  23. Ismail, N., Olano, J. P., Feng, H. M. & Walker, D. H. ( 2002; ). Current status of immune mechanisms of killing of intracellular microorganisms. FEMS Microbiol Lett 207, 111–120.[CrossRef]
    [Google Scholar]
  24. Kaito, C., Akimitsu, N., Watanabe, H. & Sekimizu, K. ( 2002; ). Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog 32, 183–190.[CrossRef]
    [Google Scholar]
  25. Kotiranta, A., Lounatmaa, K. & Haapasalo, M. ( 2000; ). Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2, 189–198.[CrossRef]
    [Google Scholar]
  26. Kramer, J. M. & Gilbert, R. J. ( 1989; ). Bacillus cereus and other Bacillus species. In Foodborne Bacterial Pathogens, pp. 21–70. Edited by M. P. Doyle. New York: Marcel Dekker.
  27. Kurz, C. L., Chauvet, S., Andres, E. & 13 other authors ( 2003; ). Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22, 1451–1460.[CrossRef]
    [Google Scholar]
  28. Lereclus, D., Agaisse, H., Gominet, M. & Chaufaux, J. ( 1995; ). Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Biotechnology 13, 67–71.[CrossRef]
    [Google Scholar]
  29. Lereclus, D., Agaisse, H., Gominet, M., Salamitou, S. & Sanchis, V. ( 1996; ). Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol 178, 2749–2756.
    [Google Scholar]
  30. Lereclus, D., Agaisse, H., Grandvalet, C., Salamitou, S. & Gominet, M. ( 2000; ). Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int J Med Microbiol 290, 295–299.[CrossRef]
    [Google Scholar]
  31. McHugh, J. P., Rodriguez-Quinones, F., Abdul-Tehrani, H., Svistunenko, D. A., Poole, R. K., Cooper, C. E. & Andrews, S. C. ( 2003; ). Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278, 29478–29486.[CrossRef]
    [Google Scholar]
  32. Meena, B. S., Kapoor, K. N. & Agarwal, R. K. ( 2000; ). Occurrence of multi-drug resistant Bacillus cereus in foods. J Food Sci Technol 37, 289–291.
    [Google Scholar]
  33. Midura, T., Gerber, M., Wood, R. & Leonard, A. R. ( 1970; ). Outbreak of food poisoning caused by Bacillus cereus. Public Health Rep 85, 45–48.[CrossRef]
    [Google Scholar]
  34. Neilands, J. B. ( 1993; ). Siderophores. Arch Biochem Biophys 302, 1–3.[CrossRef]
    [Google Scholar]
  35. Nicholson, W. L. & Setlow, P. ( 1990; ). Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by C. R. Harwood & S. M. Cutting. New York: Wiley.
  36. Panina, E. M., Mironov, A. A. & Gelfand, M. S. ( 2001; ). Comparative analysis of FUR regulons in gamma-proteobacteria. Nucleic Acids Res 29, 5195–5206.[CrossRef]
    [Google Scholar]
  37. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  38. Pohl, E., Haller, J. C., Mijovilovich, A., Meyer-Klaucke, W., Garman, E. & Vasil, M. L. ( 2003; ). Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47, 903–915.[CrossRef]
    [Google Scholar]
  39. Pospiech, A. & Neumann, B. ( 1995; ). A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11, 217–218.[CrossRef]
    [Google Scholar]
  40. Prince, R. W., Cox, C. D. & Vasil, M. L. ( 1993; ). Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 175, 2589–2598.
    [Google Scholar]
  41. Ratledge, C. & Dover, L. G. ( 2000; ). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef]
    [Google Scholar]
  42. Rowan, N. J., Deans, K., Anderson, J. G., Gemmell, C. G., Hunter, I. S. & Chaithong, T. ( 2001; ). Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl Environ Microbiol 67, 3873–3881.[CrossRef]
    [Google Scholar]
  43. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Stojiljkovic, I., Baumler, A. J. & Hantke, K. ( 1994; ). Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236, 531–545.[CrossRef]
    [Google Scholar]
  45. Thomas, C. E. & Sparling, P. F. ( 1996; ). Isolation and analysis of a fur mutant of Neisseria gonorrhoeae. J Bacteriol 178, 4224–4232.
    [Google Scholar]
  46. Touati, D. ( 2000; ). Iron and oxidative stress in bacteria. Arch Biochem Biophys 373, 1–6.[CrossRef]
    [Google Scholar]
  47. Trieu-Cuot, P. & Courvalin, P. ( 1983; ). Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′,5′′-aminoglycoside phosphotransferase type III. Gene 23, 331–341.[CrossRef]
    [Google Scholar]
  48. Xiong, A., Singh, V. K., Cabrera, G. & Jayaswal, R. K. ( 2000; ). Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus. Microbiology 146, 659–668.
    [Google Scholar]
  49. Yoshiga, T., Hernandez, V. P., Fallon, A. M. & Law, J. H. ( 1997; ). Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc Natl Acad Sci U S A 94, 12337–12342.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27744-0
Loading
/content/journal/micro/10.1099/mic.0.27744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error