1887

Abstract

Mutations in that result in constitutive colanic acid capsule synthesis were obtained in serovar Typhimurium. Most alleles were dominant; however, recessive alleles were also found, in agreement with the postulated double role (positive and negative) of RcsC on the activation of the RcsB/C phosphorelay system. mutants with constitutive activation of the Rcs system are severely attenuated for virulence in BALB/c mice and their degree of attenuation correlates with the level of Rcs activation. Partial relief of attenuation by a mutation indicates that capsule overproduction is one of the factors leading to avirulence in constitutively activated mutants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27520-0
2005-02-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510579.html?itemId=/content/journal/micro/10.1099/mic.0.27520-0&mimeType=html&fmt=ahah

References

  1. Appleby, J. L. & Bourret, R. B. ( 1998; ). Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet. J Bacteriol 180, 3563–3569.
    [Google Scholar]
  2. Arricau, N., Hermant, D., Waxin, H., Ecobichon, C., Duffey, P. S. & Popoff, M. Y. ( 1998; ). The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 29, 835–850.[CrossRef]
    [Google Scholar]
  3. Bellsolell, L., Prieto, J., Serrano, L. & Coll, M. ( 1994; ). Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface. J Mol Biol 238, 489–495.[CrossRef]
    [Google Scholar]
  4. Beuzón, C. R. & Holden, D. W. ( 2001; ). Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 3, 1345–1352.[CrossRef]
    [Google Scholar]
  5. Brill, J. A., Quinlan-Walshe, C. & Gottesman, S. ( 1988; ). Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol 170, 2599–2611.
    [Google Scholar]
  6. Brissette, R. E., Tsung, K. L. & Inouye, M. ( 1991; ). Intramolecular second-site revertants to the phosphorylation site mutation in OmpR, a kinase-dependent transcriptional activator in Escherichia coli. J Bacteriol 173, 3749–3755.
    [Google Scholar]
  7. Camacho, E. M. & Casadesús, J. ( 2001; ). Genetic mapping by duplication segregation in Salmonella enterica. Genetics 157, 491–502.
    [Google Scholar]
  8. Cano, D. A., Martínez-Moya, M., Pucciarelli, M. G., Groisman, E. A., Casadesús, J. & García-del Portillo, F. ( 2001; ). Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 69, 6463–6474.[CrossRef]
    [Google Scholar]
  9. Cano, D. A., Domínguez-Bernal, G., Tierrez, A., Portillo, F. G. & Casadesús, J. ( 2002; ). Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 162, 1513–1523.
    [Google Scholar]
  10. Carballès, F., Bertrand, C., Bouché, J. P. & Cam, K. ( 1999; ). Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 34, 442–450.[CrossRef]
    [Google Scholar]
  11. Chan, R. K., Botstein, D., Watanabe, T. & Ogata, Y. ( 1972; ). Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology 50, 883–898.[CrossRef]
    [Google Scholar]
  12. Cho, H. S., Lee, S. Y., Yan, D., Pan, X., Parkinson, J. S., Kustu, S., Wemmer, D. E. & Pelton, J. G. ( 2000; ). NMR structure of activated CheY. J Mol Biol 297, 543–551.[CrossRef]
    [Google Scholar]
  13. Claret, L. & Hughes, C. ( 2000; ). Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol 303, 467–478.[CrossRef]
    [Google Scholar]
  14. Clarke, D. J., Joyce, S. A., Toutain, C. M., Jacq, A. & Holland, I. B. ( 2002; ). Genetic analysis of the RcsC sensor kinase from Escherichia coli K-12. J Bacteriol 184, 1204–1208.[CrossRef]
    [Google Scholar]
  15. Costa, C. S. & Antón, D. N. ( 2001; ). Role of the ftsA1p promoter in the resistance of mucoid mutants of Salmonella enterica to mecillinam: characterization of a new type of mucoid mutant. FEMS Microbiol Lett 200, 201–205.[CrossRef]
    [Google Scholar]
  16. Costa, C. S., Pettinari, M. J., Méndez, B. S. & Antón, D. N. ( 2003; ). Null mutations in the essential gene yrfF (mucM) are not lethal in rcsB, yojN or rcsC strains of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 222, 25–32.[CrossRef]
    [Google Scholar]
  17. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  18. Domínguez-Bernal, G., Pucciarelli, M. G., Ramos-Morales, F., García-Quintanilla, M., Cano, D. A., Casadesús, J. & García-del Portillo, F. ( 2004; ). Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol Microbiol 53, 1437–1449.[CrossRef]
    [Google Scholar]
  19. Ebel, W., Vaughn, G. J., Peters, H. K. & Trempy, J. E. ( 1997; ). Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol 179, 6858–6861.
    [Google Scholar]
  20. Ferrieres, L. & Clarke, D. J. ( 2003; ). The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50, 1665–1682.[CrossRef]
    [Google Scholar]
  21. Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M. P., Gutierrez, C. & Cam, K. ( 2003; ). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49, 823–832.
    [Google Scholar]
  22. Freter, R., O'Brien, P. C. & Macsai, M. S. ( 1981; ). Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 34, 234–240.
    [Google Scholar]
  23. Furness, R. B., Fraser, G. M., Hay, N. A. & Hughes, C. ( 1997; ). Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol 179, 5585–5588.
    [Google Scholar]
  24. Gillen, K. L. & Hughes, K. T. ( 1991; ). Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J Bacteriol 173, 2301–2310.
    [Google Scholar]
  25. Givaudan, A. & Lanois, A. ( 2000; ). flhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol 182, 107–115.[CrossRef]
    [Google Scholar]
  26. Gottesman, S. ( 1995; ). Regulation of capsule synthesis: modification of the two-component paradigm by an accessory unstable regulator. In Two-Component Signal Transduction, pp. 253–262. Edited by J. A. Hoch & T. J. Silhavy. Washington, DC: American Society for Microbiology.
  27. Gottesman, S., Trisler, P. & Torres-Cabassa, A. ( 1985; ). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162, 1111–1119.
    [Google Scholar]
  28. Guex, N. & Peitsch, M. C. ( 1997; ). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.[CrossRef]
    [Google Scholar]
  29. Gygi, D., Bailey, M. J., Allison, C. & Hughes, C. ( 1995; ). Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Mol Microbiol 15, 761–769.
    [Google Scholar]
  30. Hagiwara, D., Sugiura, M., Oshima, T., Mori, H., Aiba, H., Yamashino, T. & Mizuno, T. ( 2003; ). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185, 5735–5746.[CrossRef]
    [Google Scholar]
  31. Han, D. C., Chen, C. Y., Chen, Y. F. & Winans, S. C. ( 1992; ). Altered-function mutations of the transcriptional regulatory gene virG of Agrobacterium tumefaciens. J Bacteriol 174, 7040–7043.
    [Google Scholar]
  32. Houng, H. S., Noon, K. F., Ou, J. T. & Baron, L. S. ( 1992; ). Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and identity of ViaA with RcsB. J Bacteriol 174, 5910–5915.
    [Google Scholar]
  33. Jin, S., Song, Y., Pan, S. Q. & Nester, E. W. ( 1993; ). Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium. Mol Microbiol 7, 555–562.[CrossRef]
    [Google Scholar]
  34. Kelley, W. L. & Georgopoulos, C. ( 1997; ). Positive control of the two-component RcsC/B signal transduction network by DjIA: a member of the DnaJ family of molecular chaperones in Escherichia coli. Mol Microbiol 25, 913–931.[CrossRef]
    [Google Scholar]
  35. Lee, S. Y., Cho, H. S., Pelton, J. G. & 7 other authors ( 2001; ). Crystal structure of an activated response regulator bound to its target. Nat Struct Biol 8, 52–56.[CrossRef]
    [Google Scholar]
  36. Lukat, G. S., Lee, B. H., Mottonen, J. M., Stock, A. M. & Stock, J. B. ( 1991; ). Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem 266, 8348–8354.
    [Google Scholar]
  37. Macnab, R. M. ( 1996; ). Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 123–145. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  38. Maloy, S. R. ( 1990; ). Experimental Techniques in Bacterial Genetics. Boston: Jones & Barlett.
  39. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C. & 24 other authors ( 2003; ). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31, 383–387.[CrossRef]
    [Google Scholar]
  40. McClelland, M., Sanderson, K. E., Spieth, J. & 23 other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  41. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H. & Mizuno, T. ( 2002; ). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46, 281–291.[CrossRef]
    [Google Scholar]
  43. Pazour, G. J., Ta, C. N. & Das, A. ( 1992; ). Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG. J Bacteriol 174, 4169–4174.
    [Google Scholar]
  44. Sanders, D. A., Gillece-Castro, B. L., Stock, A. M., Burlingame, A. L. & Koshland, D. E., Jr ( 1989; ). Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem 264, 21770–21778.
    [Google Scholar]
  45. Scheeren-Groot, E. P., Rodenburg, K. W., den Dulk-Ras, A., Turk, S. C. & Hooykaas, P. J. ( 1994; ). Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens. J Bacteriol 176, 6418–6426.
    [Google Scholar]
  46. Schmieger, H. ( 1972; ). Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119, 75–88.[CrossRef]
    [Google Scholar]
  47. Schmitt, C. K., Ikeda, J. S., Darnell, S. C., Watson, P. R., Bispham, J., Wallis, T. S., Weinstein, D. L., Metcalf, E. S. & O'Brien, A. D. ( 2001; ). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun 69, 5619–5625.[CrossRef]
    [Google Scholar]
  48. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. ( 2003; ). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31, 3381–3385.[CrossRef]
    [Google Scholar]
  49. Silversmith, R. E., Smith, J. G., Guanga, G. P., Les, J. T. & Bourret, R. B. ( 2001; ). Alteration of a nonconserved active site residue in the chemotaxis response regulator CheY affects phosphorylation and interaction with CheZ. J Biol Chem 276, 18478–18484.[CrossRef]
    [Google Scholar]
  50. Sledjeski, D. D. & Gottesman, S. ( 1996; ). Osmotic shock induction of capsule synthesis in Escherichia coli K-12. J Bacteriol 178, 1204–1206.
    [Google Scholar]
  51. Smith, J. G., Latiolais, J. A., Guanga, G. P., Pennington, J. D., Silversmith, R. E. & Bourret, R. B. ( 2004; ). A search for amino acid substitutions that universally activate response regulators. Mol Microbiol 51, 887–901.
    [Google Scholar]
  52. Stevenson, G., Andrianopoulos, K., Hobbs, M. & Reeves, P. R. ( 1996; ). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178, 4885–4893.
    [Google Scholar]
  53. Stevenson, G., Lan, R. & Reeves, P. R. ( 2000; ). The colanic acid gene cluster of Salmonella enterica has a complex history. FEMS Microbiol Lett 191, 11–16.[CrossRef]
    [Google Scholar]
  54. Stewart, R. C. ( 1993; ). Activating and inhibitory mutations in the regulatory domain of CheB, the methylesterase in bacterial chemotaxis. J Biol Chem 268, 1921–1930.
    [Google Scholar]
  55. Stock, J. B., Stock, A. M. & Mottonen, J. M. ( 1990; ). Signal transduction in bacteria. Nature 344, 395–400.[CrossRef]
    [Google Scholar]
  56. Stock, A. M., Martinez-Hackert, E., Rasmussen, B. F., West, A. H., Stock, J. B., Ringe, D. & Petsko, G. A. ( 1993; ). Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32, 13375–13380.[CrossRef]
    [Google Scholar]
  57. Stout, V. ( 1996; ). Identification of the promoter region for the colanic acid polysaccharide biosynthetic genes in Escherichia coli K-12. J Bacteriol 178, 4273–4280.
    [Google Scholar]
  58. Stout, V. & Gottesman, S. ( 1990; ). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172, 659–669.
    [Google Scholar]
  59. Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D. & Gottesman, S. ( 1991; ). RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173, 1738–1747.
    [Google Scholar]
  60. Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H. & Mizuno, T. ( 2001; ). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40, 440–450.[CrossRef]
    [Google Scholar]
  61. Tans-Kersten, J., Brown, D. & Allen, C. ( 2004; ). Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Mol Plant–Microbe Interact 17, 686–695.[CrossRef]
    [Google Scholar]
  62. Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. ( 1987; ). Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84, 2833–2837.[CrossRef]
    [Google Scholar]
  63. Tomomori, C., Tanaka, T., Dutta, R. & 10 other authors ( 1999; ). Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol 6, 729–734.[CrossRef]
    [Google Scholar]
  64. Virlogeux, I., Waxin, H., Ecobichon, C. & Popoff, M. Y. ( 1995; ). Role of the viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. Microbiology 141, 3039–3047.[CrossRef]
    [Google Scholar]
  65. Virlogeux, I., Waxin, H., Ecobichon, C., Lee, J. O. & Popoff, M. Y. ( 1996; ). Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178, 1691–1698.
    [Google Scholar]
  66. West, A. H. & Stock, A. M. ( 2001; ). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26, 369–376.[CrossRef]
    [Google Scholar]
  67. Young, G. M., Badger, J. L. & Miller, V. L. ( 2000; ). Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68, 4323–4326.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27520-0
Loading
/content/journal/micro/10.1099/mic.0.27520-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error