- Volume 143, Issue 6, 1997
Volume 143, Issue 6, 1997
- Pathogenicity And Medical Microbiology
-
-
-
Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches
More LessThe abilities of isolates of saprophytes (Neurospora crassa, Aspergillus nidulans), an opportunistic human pathogen (Aspergillus fumigatus), an opportunistic insect pathogen (Aspergillus flavus), plant pathogens (Verticillium albo-atrum, Verticillium dahliae, Nectria haematococca), a mushroom pathogen (Verticillium fungicola) and entomopathogens (Verticillium lecanii, Beauveria bassiana, Metarhizium anisopliae) to utilize plant cell walls and insect cuticle components in different nutrient media were compared. The pathogens showed enzymic adaptation to the polymers present in the integuments of their particular hosts. Thus, the plant pathogens produced high levels of enzymes capable of degrading pectic polysaccharides, cellulose and xylan, as well as a cutinase substrate, but secreted little or no chitinase and showed no proteolytic activity against elastin and mucin. The entomopathogens and V. fungicola degraded a broad spectrum of proteins (including elastin and mucin) but, except for chitinase, cellulase (V. lecanii and V. fungicola only) and cutinase (B. bassiana only), produced very low levels of polysaccharidases. The saprophytes (Neu. crassa and A. nidulans) and the opportunistic pathogens (A. fumigatus and A. flavus) produced the broadest spectrum of protein and polysaccharide degrading enzymes, indicative of their less specialized nutritional status. V. lecanii and V. albo-atrum were compared in more detail to identify factors that distinguish plant and insect pathogens. V. albo-atrum, but not V. lecanii, grew well on different plant cell wall components. The major class of proteases produced in different media by isolates of V. albo-atrum and V. dahliae were broad spectrum basic (pl > 10) trypsins which degrade Z-AA-AA-Arg-NA substrates (Z, benzoyl; AA, various amino acids; NA, nitroanilide), hide protein azure and insect (Manduca sexta) cuticles. Analogous peptidases were produced by isolates of V. lecanii and V. fungicola but they were specific for Z-Phe-Val-Arg-NA. V. albo-atrum and V. dahliae also produced low levels of neutral (pl ca 7) and basic (pl ca 9.5) subtilisin-like proteases active against a chymotrypsin substrate (Succinyl-Ala2-Pro-Phe-NA) and insect cuticle. In contrast, subtilisins comprised the major protease component secreted by V. lecanii and V. fungicola. Both V. lecanii and V. albo-atrum produced the highest levels of subtilisin and trypsin-like activities during growth on collagen or insect cuticle. Results are discussed in terms of the adaptation of fungi to the requirements of their ecological niches
-
-
- Physiology And Growth
-
-
-
>Filamentous growth of the budding yeast Saccharomyces cerevisiae induced by overexpression of the WH12 gene
More LessThe WH12 gene of the budding yeast Saccharomyces cerevisiae is required for the arrest of cell proliferation upon nutrient exhaustion: whi2 mutants carry on dividing and in the absence of growth become abnormally SmaIl. It is reported here that overexpression of Whi2 from the GAL1 promoter results in filamentous growth - cells fail to complete cytokinesis, the budding pattern changes from axial to polar, cells become elongated and cell size increases threefold. In many ways, these filaments resemble the pseudohyphae which result from nitrogen-limited growth and the filaments seen during the invasive growth of haploids. However, Whi2-induced filament formation is reduced, but not blocked, by mutations in STE7, STE12 or STE20 which do block pseudohypha formation. Furthermore, pseudohypha formation can still occur in a diploid in which both copies of the WH12 gene have been deleted. Thus Whi2-induced filament formation and pseudohypha formation must come about through the action of different pathways. Despite this, a mutation in the STE11 gene, which is required for pseudohypha formation, does block Whi2-induced filament formation. Concanavalin A pulse-chase experiments show that new cell wall material is incorporated only into the tips of the apical cells. An extragenic suppressor of the whi2 allele also results in filamentous growth. These results suggest that Whi2 negatively regulates a function required for the budding mode of cell proliferation including cytokinesis. This function is defined wholly or in part by the fswl allele.
-
-
-
-
An important role for glutathione and γ-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae
More LessWhen the yeast Saccharomyces cerevisiae Σ1278b was starved for nitrogen, the total glutathione (GSH) pool increased from 7 to 17 nmol (mg dry wt)-1 during the first 2 h and then declined. More than 90% of the total GSH shifted towards the central vacuole during this time. This transient stimulation was not observed in the presence of buthionine-(S,R)-sulphoximine (BSO), a specific transition-state-analogue inhibitor of γ-glutamylcysteine synthase (γ-GCS), nor in a mutant strain deficient in this enzyme. γ-Glutamyltranspeptidase (γ-GT), a vacuolar enzyme responsible for the initial step of GSH degradation, was derepressed during nitrogen starvation. This mechanism can apparently enable the starved yeast cell to use the constituent amino acids from GSH which accumulate in the vacuole to satisfy its growth requirements for nitrogen.
-
-
-
Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose
More LessIt is well known that glycogen and trehalose accumulate in yeast under nutrient starvation or entering into the stationary phase of growth, and that high levels of trehalose are found in heat-shocked cells. However, effects of various types of stress on trehalose, and especially on glycogen, are poorly documented. Taking into account that almost all genes encoding the enzymes involved in the metabolism of these two reserve carbohydrates contain between one and several copies of the stress-responsive element (STRE), an investigation was made of the possibility of a link between the potential transcriptional induction of these genes and the accumulation of glycogen and trehalose under different stress conditions. Using transcriptional fusions, it was found that all these genes were induced in a similar fashion, although to various extents, by temperature, osmotic and oxidative stresses. Experiments performed with an msn2/msn4 double mutant proved that the transcriptional induction of the genes encoding glycogen synthase (GSY2) and trehalose-6-phosphate synthase (TPS1) was needed for the small increase in glycogen and trehalose upon exposure to a mild heat stress and salt shock. However, the extent of transcriptional activation of these genes upon stresses in wild-type strains was not correlated with a proportional rise in either glycogen or trehalose. The major explanation for this lack of correlation comes from the fact that genes encoding the enzymes of the biosynthetic and of the biodegradative pathways were almost equally induced. Hence, trehalose and glycogen accumulated to much higher levels in cells lacking neutral trehalase or glycogen phosphorylase exposed to stress conditions, which suggested that one of the major effects of stress in yeast is to induce a wasteful expenditure of energy by increasing the recycling of these molecules. We also found that transcriptional induction of STRE-controlled genes was abolished at temperatures above 40 °C, while induction was still observed for a heat-shock-element-regulated gene. Remarkably, trehalose accumulated to very high levels under this condition. This can be explained by a stimulation of trehalose synthase and inhibition of trehalase by high temperature.
-
-
-
Glucose-dependent, cAMP-mediated ATP efflux from Saccharomyces cerevisiae
More LessExtracellular ATP plays an important role in the physiology of multicellular organisms; however, it is unknown whether unicellular organisms such as yeast also release ATP extracellularly. Experiments are described here which show that Saccharomyces cerevisiae releases ATP to the extracellular fluid. This efflux required glucose and the rate was increased dramatically by the proton ionophores nigericin, monensin, carbonyl cyanide m-chlorophenylhydrazone and carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone; ATP efflux was also increased by the plasma membrane proton pump inhibitor diethylstilbestrol. The increase in the concentration of extracellular ATP was not due to cell lysis or general disruption of plasma membrane integrity as measured by colony-forming and methylene-blue-staining assays. ATP efflux was strictly correlated with a rise in intracellular cAMP; therefore, the cAMP pathway is likely to be involved in triggering ATP efflux. These results demonstrate that yeast cells release ATP in a regulated manner.
-
-
-
The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase
More LessThe concentration of glucose in the medium influences the regulation of cAMP levels in Escherichia coli. Growth in minimal medium with micromolar glucose results in 8- to 10-fold higher intracellular cAMP concentrations than observed during growth with excess glucose. Current models would suggest that the difference in cAMP levels between glucose-rich and glucose-limited states is due to altered transport flux through the phosphoenolpyruvate : glucose phosphotransferase system (PTS), which in turn controls adenylate cyclase. A consequence of this model is that cAMP levels should be inversely related to the saturation of the PTS transporter. To test this hypothesis, the relationship between external glucose concentration and cAMP levels inside E. coli were investigated in detail, both through direct cAMP assay and indirectly through measurement of expression of cAMP-regulated genes. Responses were followed in batch, dialysis and glucose-limited continuous culture. A sharp rise in intracellular cAMP occurred when the nutrient concentration in minimal medium dropped to approximately 0∙3 mM glucose. Likewise, addition of >0∙3 mM glucose, but not <0∙3 mM glucose, sharply reduced the intracellular cAMP level of starving bacteria. There was no striking shift in growth rate or [14C]glucose assimilation in bacteria passing through the 0∙5 to 0∙3 mM concentration threshold influencing cAMP levels, suggesting that neither metabolic flux nor transporter saturation influenced the sensing of nutrient levels. The (IIA/IIBC)GIc PTS is 96–97% saturated at 0∙3 mM glucose so these results are not easily reconcilable with current models of cAMP regulation. Aside from the transition in cAMP levels initiated above 0∙3 mM, a second shift occurred below 1 μM glucose. Approaching starvation, well below saturation of the PTS, cAMP levels either increased or decreased depending on unknown factors that differ between common E. coli K-12 strains.
-
-
-
Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp.
More LessEnrichment cultures were prepared under strictly anoxic conditions in medium representing fresh water and containing an organosulfonate as electron donor and carbon source, and nitrate as electron acceptor. The inoculum was from the anaerobic digestor of two communal sewage works. The natural organosulfonates 2-aminoethanesulfonate (taurine), dl-2-amino-3-sulfopropionate (cysteate) and 2-hydroxyethanesulfonate (isethionate) all gave positive enrichments, whereas unsubstituted alkanesulfonates, such as methanesulfonate and arenesulfonates, gave no enrichment. Two representative enrichments were used to obtain pure cultures, and strains NKNTAU (utilizing taurine) and NKNIS (utilizing isethionate) were isolated. Strain NKNTAU was examined in detail. Out of 18 tested organosulfonates, it utilized only one, taurine, and was identified as a novel Alcaligenes sp., a facultatively anaerobic bacterium. Carbon from taurine was converted to cell material and carbon dioxide. The amino group was released as ammonium ion and the sulfonate moiety was recovered as sulfate. Nitrate was reduced to nitrogen gas.
-
-
-
Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism
More LessThe expression of the cbb and gap–pgk operons of Xanthobacter flavus encoding enzymes of the Calvin cycle is regulated by the transcriptional regulator CbbR. In order to identify other genes involved in the regulation of these operons, a mutant was isolated with a lowered activity of a fusion between the promoter of the cbb operon and the reporter gene lacZ. This mutant was unable to grow autotrophically and had a reduced growth rate of medium supplemented with gluconate or succinate. The regulation of the gap–pgk operon in the mutant was indistinguishable from the wild-type strain, but induction of the cbb operon upon transition to autotrophic growth conditions was delayed. Complementation of the mutant with a genomic library of X. flavus resulted in the isolation of a 1∙1 kb ApaI fragment which restored autotrophic growth of the mutant. One open reading frame (ORF) was present on the ApaI fragment, which could encode a protein highly similar to triosephosphate isomerase proteins from other bacteria. Cell extracts of the mutant grown under glycolytic or gluconeogenic conditions had severely reduced triosephosphate isomerase activities. The ORF was therefore identified as tpi, encoding triosephosphate isomerase. The tpi gene is not linked to the previously identified operons encoding Calvin cycle enzymes and therefore represents a third transcriptional unit required for autotrophic metabolism.
-
-
-
The thioredoxin reductase system of mycoplasmas
More LessRepresentative species of the Mollicutes possess a thioredoxin reductase system (NTS) composed of a low-molecular-mass thioredoxin (TRX) and NADPH-binding thioredoxin reductase (NTR). The TRXs of Mycoplasma pneumoniae and M. capricolum have molecular masses of 11.2 and 12 kDa, respectively, and are stable at 90 °C for 10 min. Both TRXs reacted with monospecific polyclonal antibodies generated against the Bacillus subtilis TRX, but not with anti-Escherichia coli TRX antisera. The M. capricolum and M. pneumoniae NTRs were partially purified and were found to be active with the homologous TRX, but not with the TRX of B. subtilis or E. coli. The NTS activity had an optimal pH of 6.5-7.5 and was dependent on NADPH as an electron donor, a requirement which could not be fulfilled by NADH. The genes encoding the TRX and NTR (trxA and trxB) of M. pneumoniae were cloned and sequenced. The comparative analysis of the predicted amino acid sequence of trxA showed that the 11.2 kDa protein (102 aa) shared 26-68% sequence similarity with products of other known trxA genes and contained the conserved active site Cys-Gly-Pro-Cys. The predicted amino acid sequence of trxB contained 315 residues with a conserved NADPH binding domain and FAD binding domains I and II. The cysteine dithiol redox active region had isoleucine rather than threonine at the active site, as compared with other NTRs. The high activity of the NTS in mycoplasmas suggests that mycoplasmas may have evolved the NTS to protect themselves from the consequences of their self-generated oxidative challenge.
-
-
-
Mutations to antibiotic resistance occur during the stationary phase in Lactobacillus plantarum ATCC 8014
More LessWhen Lactobacillus plantarum ATCC 8014 was maintained in LCM broth (which consists of buffered tryptone and is sufficient to support the growth of some species of Lactobacillus ) for long periods (120 d), viable bacteria persisted. Rifampicin-, streptomycin- and sodium-fusidate-resistant mutants were recovered from parallel LCM broth cultures following a stochastic pattern. Individual cultures appeared to yield mutants intermittently. One culture in particular yielded rifampicin-resistant colonies at a frequency of 1 in 100 viable bacteria after 20 d incubation and these persisted until the experiment was terminated at 115 d. In a separate experiment two parallel cultures yielded mutants resistant to low concentrations of streptomycin at a similar frequency. Using a chemostat it was shown that in continuous culture in LCM at slow growth rates the highest frequency of recovery of antibiotic-resistant mutants was achieved when the bacteria exhibited doubling times of 90 h or greater. The frequency of recovery of mutants was as high as 1 in 1000 viable bacteria. Thus, mutations to antibiotic resistance in L. plantarum ATCC 8014 can take place in the absence of measurable cell division. The data are consistent with the notion that populations of starved bacteria in stationary phase can be genetically dynamic.
-
-
-
Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR
More LessA mildly acid-sensitive mutant of Rhizobium leguminosarum bv. viciae WSM710 (WR6-35) produced colonies which were more mucoid in phenotype than the wild-type. Strain WR6-35 contained a single copy of Tn5 and the observed mucoid phenotype, acid sensitivity and Tn5-induced kanamycin resistance were 100% co-transducible using phage RL38. WR6-35 produced threefold more exopolysaccharide (EPS) than the wild-type in minimal medium devoid of a nitrogen source. EPS produced by the mutant and the wild-type was identical as determined by proton NMR spectra. An EcoRI rhizobial fragment containing Tn5 and flanking rhizobial sequences was cloned from the mutant, restriction mapped and sequenced. There was extensive similarity between the ORF disrupted by Tn5 in R. leguminosarum bv. viciae WR6-35 and the exoR gene of Rhizobium (Sinorhizobium) meliloti Rm1021 (71-3% identity over 892 bp). At the protein level there was 70% identity and 93-3% similarity over 267 amino acids with the ExoR protein of R. meliloti Rm1021. Hydrophilicity profiles of the two proteins from these two rhizobia are superimposable. This gene in R. leguminosarum bv. viciae was thus designated exoR. The data suggest that Tn5 has disrupted a regulatory gene encoding a protein that negatively modulates EPS biosynthesis in R. leguminosarum bv. viciae WSM710. Despite earlier suggestions that EPS production and acid tolerance might be positively correlated, disruption of exoR in either R. leguminosarum bv. viciae or R. meliloti and its associated overproduction of EPS does not result in a more acid-tolerant phenotype than the wild-type when cultures are screened on conventional laboratory agar.
-
-
-
A Neurospora crassa mutant altered in the regulation of L-amino acid oxidase
More LessThe isolation and characterization of a Neurospora crassa mutant altered in l-amino oxidase regulation is reported. The previously isolated gln-1bR8 strain, which only synthesizes the glutamine synthetase α monomer and lacks the β monomer, was used as parental strain. A mutant derivative of strain was selected for its ability to grow on minimal medium in the presence of DL-methionine-SR-sulfoximine (MSO), an inhibitor of glutamine synthetase activity. This gln-1bR8;MSO R mutant overcame the inhibitory effect of MSO by increasing the activity of L-amino acid oxidase, an enzyme capable of degrading this compound. In contrast with the wild-type strain, the L-amino acid oxidase of the MSOR mutant was resistant to glutamine repression; in fact, it was induced by this amino acid but repressed by ammonium. This mutant is different from other nitrogen regulatory N. crassa mutants reported and is only altered in the regulation of L-amino acid oxidase. The MSOR mutation is epistatic to nit-2 since the nit2;MSO R double mutant regulated the L-amino acid oxidase in the same way as the MSO R single mutant.
-
-
-
Metabolic regulation of Irp gene expression in Escherichia coli K-12
More LessExpression of the Irp gene is regulated in part by the nutrients available to the cell, and is decreased in rich medium, in glucose minimal media enriched with amino acids, and in minimal medium with alternative carbon sources, such as acetate and succinate. When Lrp production is increased in a given medium, expression of its target genes is also increased. However, when the medium is changed from glucose to acetate, the response of the target genes is governed by many factors.
-
- Plant-Microbe Interactions
-
-
-
The symbiotic phenotypes of exopolysaccharide-defective mutants of Rhizobium sp. strain TAL1145 do not differ on determinate- and indeterminate-nodulating tree legumes
More LessThree classes of exopolysaccharide (EPS) defective mutants were isolated by Tn3Hogus -insertion mutagenesis of Rhizobium sp. strain TAL1145, which nodulates tree legumes. The class I and class III mutants produced 10-22% of the EPS produced by TAL1145 and appeared partially mucoid while the class II mutants formed small, opaque and non-mucoid colonies. Size-fractionation of the soluble EPSs made by these mutants in the culture supernatant indicated that the class I and the class III mutants produced reduced levels of both highland low-molecular-mass EPSs while the class II mutants lacked both these EPSs but produced a small amount of a medium-molecular-mass anthrone-reactive EPS. The succinyl and acetyl substituents observed in the TAL1145 EPS were absent in the EPS of the class II mutants. When examined under UV, the class I and class III mutants grown on Calcofluor-containing YEM agar showed dim blue fluorescence, compared to the bright blue fluorescence of the wild-type strain, whereas the class II mutants did not fluoresce. While the dim blue fluorescence of the class III mutants changed to yellow-green after 10 d, the fluorescence of the class I mutants did not change after prolonged incubation. Unlike the EPS-defective mutants of other rhizobia, these mutants did not show different symbiotic phenotypes on determinate- and indeterminate-nodulating tree legumes. The class I and the class III mutants formed small ineffective nodules on both types of legumes whereas the class II mutants formed normal nitrogen-fixing nodules on both types. The genes disrupted in the class I and class III mutants form a single complementation group while those disrupted in the class II mutants constitute another. All the three classes of EPS-defective mutants were located within a 10.8 kb region and complemented by two overlapping cosmids.
-
-
- Systematics
-
-
-
The genetic structure of Escherichia coli populations in feral house mice
More LessEscherichia coli was isolated from feral house mice (Mus domesticus) during the course of a mouse plague in the state of Victoria, Australia. Two farms were sampled over a period of 7 months and a total of 447 isolates were collected. The isolates were characterized using the techniques of randomly amplified polymorphic DNA and multi-locus enzyme electrophoresis. The mean genetic diversity of this E. coli population (H = 0.24) was found to be substantially lower than the diversity of an E. coli population reported elsewhere for a single human host. Analysis of the allozyme data revealed that there were significant differences in the relative abundance of genotypes between the two localities sampled and among sample dates. Overall, however, spatial and temporal effects accounted for less than 5% of the genotypic diversity. Allele frequencies and the relative abundance of the more common genotypes did not differ between male and female hosts. The number of genotypes and genotype diversity increased as the age of the host increased, suggesting that the mice are continuing to acquire new E. coli clones throughout their life. The frequency of some alleles changed with respect to host age, which indicates that clone acquisition may not be a random process. It is argued that the low level of genetic diversity observed in this population of E. coli reflects the boom and bust nature of mouse population density in this region of Australia.
-
-
- Genome Analysis
-
-
-
The Bacillus subtilis 168 chromosome from sspE to katA
More LessWe have cloned and sequenced a 24.5 kb region of the Bacillus subtilis 168 chromosome spanning the sspE and katA genes. The region contains a ribosomal RNA operon, rrnD, a tRNA gene set, trnD and 17 ORFs, 16 with putative ribosome-binding sites. Four of the ORFs (ORF2, ORF14, ORF16 and ORF17) match to known B. subtilis genes (sspE, thiA, senS and katA). Eight of the remaining ORF products show similarities with proteins present in the databases, including an ATP-binding transport protein, a glutamate-1-semialdehyde aminotransferase, a thiol-specific antioxidant protein, a mitomycin radical oxidase and a ferric uptake regulation protein.
-
-
-
-
Nucleotide sequence and analysis of the phoB-rrnE-groESL region of the Bacillus subtilis chromosome
A 36 kb sequence of the phoB-rrnE-groESL region of the Bacillus subtilis chromosome at around 55° has been determined. The sequenced region contains 36 ORFs including the phoB and groESL genes, and the whole rrnE operon. The phoB gene is transcribed in the direction opposite to that of chromosome replication, while most ORFs, including groESL and the rrnE operon, are transcribed in the same direction. Two newly identified tRNA genes upstream of the rrnE operon were those for Arg-tRNA and Gly-tRNA. The sequenced region contains an operon consisting of genes for degradation and uptake of mannan. The rrnE operon and its downstream ORFs are well conserved among Mycoplasma genitalium, Haemophilus influenzae, Synechocystis sp. and Methanococcus jannaschii. σH consensus sequences are present in the promoter regions of three ORFs, including groESL.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)