1887

Abstract

Enrichment cultures were prepared under strictly anoxic conditions in medium representing fresh water and containing an organosulfonate as electron donor and carbon source, and nitrate as electron acceptor. The inoculum was from the anaerobic digestor of two communal sewage works. The natural organosulfonates 2-aminoethanesulfonate (taurine), -2-amino-3-sulfopropionate (cysteate) and 2-hydroxyethanesulfonate (isethionate) all gave positive enrichments, whereas unsubstituted alkanesulfonates, such as methanesulfonate and arenesulfonates, gave no enrichment. Two representative enrichments were used to obtain pure cultures, and strains NKNTAU (utilizing taurine) and NKNIS (utilizing isethionate) were isolated. Strain NKNTAU was examined in detail. Out of 18 tested organosulfonates, it utilized only one, taurine, and was identified as a novel sp., a facultatively anaerobic bacterium. Carbon from taurine was converted to cell material and carbon dioxide. The amino group was released as ammonium ion and the sulfonate moiety was recovered as sulfate. Nitrate was reduced to nitrogen gas.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-1919
1997-06-01
2021-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/6/mic-143-6-1919.html?itemId=/content/journal/micro/10.1099/00221287-143-6-1919&mimeType=html&fmt=ahah

References

  1. Baker S. C., Kelly D. P., Murrell J. C. 1991; Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle.. Nature 350:627–628
    [Google Scholar]
  2. Bergmeyer H. U. 1983; Methods of Enzymatic Analysis. 3rd edn. Weinheim: Verlag Chemie..
    [Google Scholar]
  3. Chance B., Williams G. R. 1955; Respiratory enzymes in oxidative phosphorylation. II. Difference spectra.. J Biol Chem 217:395–407
    [Google Scholar]
  4. Chien C.-C., Leadbetter E. R., Godchaux W., III. 1995; Sulfonate-sulfur can be assimilated for fermentative growth.. FEMS Microbiol Lett 129:189–194
    [Google Scholar]
  5. Cook A. M. 1987; Biodegradation of s-triazine xenobiotics.. FEMS Microbiol Rev 46:93–116
    [Google Scholar]
  6. Cook A. M., Hütter R. 1981; s-Triazines as nitrogen sources for bacteria.. J Agric Food Chem 29:1135–1143
    [Google Scholar]
  7. Denger K., Cook A. M. 1997; Assimilation of sulfur from alkyl- and arylsulfonates by Clostridium spp.. Arch Microbiol 167:177–181
    [Google Scholar]
  8. Denger K., Kertesz M. A., Vock E., Schön R., Mägli A., Cook A. M. 1996; Anaerobic desulfonation of 4-tolylsulfonate and 2-(4-sulfophenyl)butyrate by Clostridium sp.. Appl Environ Microbiol 62:1526–1530
    [Google Scholar]
  9. den Dooren de Jong L. E. 1926; Bijdrage tot de Kennis van het Mineralisatieproces. Rotterdam: Nijgh & van Ditmar..
    [Google Scholar]
  10. Felsenstein J. 1993; PHYLIP - phylogeny inference package. Seattle: Department of Genetics, University of Washington, USA..
    [Google Scholar]
  11. Fuchs G., Mohamed M. E. S., Altenschmidt U., Koch J., Lack A., Brackmann R., Lochmeyer C., Oswald B. 1994; Biochemistry of anaerobic biodegradation of aromatic compounds. In Biochemistry of Microbial Degradation, pp.. 513–553 Edited by C. Ratledge. Dordrecht: Kluwer..
    [Google Scholar]
  12. Gesellschaft Deutscher Chemiker. 1996; German Standard Methods for the Laboratory Examination of Water, Waste Water and Sludge. Weinheim: VCH..
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994; Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology..
    [Google Scholar]
  14. Hall O. J., Aller R. C. 1992; A rapid, small-volume, flow injection analysis for CO2 and NH4 + in marine and freshwaters.. Limnol Oceanogr 37:1113–1119
    [Google Scholar]
  15. Huxtable R. J. 1992; Physiological actions of taurine.. Physiol Rev 72:101–163
    [Google Scholar]
  16. Ikeda K., Yamada H., Tanaka S. 1963; Bacterial degradation of taurine.. J Biochem 54:312–316
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism, pp.. 21–132 Edited by H. N. Munro. New York: Academic Press..
    [Google Scholar]
  18. Kertesz M. A., Cook A. M., Leisinger T. 1994; Microbial metabolism of sulfur- and phosphorus-containing xenobiotics.. FEMS Microbiol Rev 15:195–215
    [Google Scholar]
  19. Kondo H., Ishimoto M. 1975; Purification and properties of sulfoacetaldehyde sulfo-lyase, a thiamine pyrophosphate-dependent enzyme forming sulfite and acetate.. J Biochem 78:317–325
    [Google Scholar]
  20. Kondo H., Ishimoto M. 1987; Taurine dehydrogenase.. Methods Enzymol 143:496–499
    [Google Scholar]
  21. Lange B., Vejdelek Z. J. 1980; Photometrische Analyse. Weinheim: Verlag Chemie..
    [Google Scholar]
  22. Laue H., Field J. A., Cook A. M. 1996; Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor.. Environ Sci Technol 30:1129–1132
    [Google Scholar]
  23. Laue H., Denger K., Cook A. M. 1997; Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU.. Appl Environ Microbiol 63: (in press)..
    [Google Scholar]
  24. Lie T. J., Pitta T., Leadbetter E. R., Godchaux W., III, Leadbetter J. R. 1996; Sulfonates: novel participants in anaerobic respiration.. Arch Microbiol 166:204–210
    [Google Scholar]
  25. Luria S. E. 1960; The bacterial protoplasm: composition and organization. In The Bacteria, vol. 1, pp.. 1–34 Edited by I. C. Gunsalus & R. Y. Stanier. New York: Academic Press..
    [Google Scholar]
  26. Maidak B. L., Olsen G. L., Larsen N., McCaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP).. Nucleic Acids Res 24:82–85
    [Google Scholar]
  27. Painter H. A., Mosey F. E. 1992; The anaerobic biodegradability of linear alkyl benzene sulfonate (LAS). In Proceedings of the 3rd CESIO International Surfactant Congress, London, UK, 1–5 June, 1992, pp.. 34–43
    [Google Scholar]
  28. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodo-spirillaceae.. Int J Syst Bacteriol 28:283–288
    [Google Scholar]
  29. van der Ploeg, Weiss M., Sailer E., Nashimoto H., Saito N., Kertesz M. A., Leisinger T. 1996; Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source.. J Bacteriol 178:5438–5446
    [Google Scholar]
  30. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:1088–1092
    [Google Scholar]
  31. Roberts R. B., Cowie D. B., Abelson P. H., Bolton E. T., Britten R. J. 1955; Sulfur metabolism. In Studies of Biosynthesis in Escherichia coli, pp.. 318–405 Edited by R. B. Roberts, D. B. Cowie, P. H. Abelson, E. T. Bolton & R. J. Britten. Washington, DC: Carnegie Institution of Washington..
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees.. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Sanger F. 1945; The free amino groups of insulin.. Biochem J 39:507–515
    [Google Scholar]
  34. Schauder R., Eikmanns B., Thauer R. K., Widdel F., Fuchs G. 1986; Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle.. Arch Microbiol 145:162–172
    [Google Scholar]
  35. Shimamoto G., Berk R. S. 1980; Taurine catabolism. II. Biochemical and genetic evidence for sulfoacetaldehyde sulfo-lyase involvement.. Biochim Biophys Acta 632:121–130
    [Google Scholar]
  36. Stipanuk M. H., Hirschberger L. L., de la Rosa J. 1987; Cysteinesulfinic acid, hypotaurine, and taurine: reversed-phase high-performance liquid chromatography.. Methods Enzymol 143:155–160
    [Google Scholar]
  37. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria.. Bacteriol Rev 41:100–180
    [Google Scholar]
  38. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii.. Arch Microbiol 137:163–167
    [Google Scholar]
  39. Voet D., Voet J. G. 1992; Biochemie, 1st edn. Weinheim: Verlag Chemie..
    [Google Scholar]
  40. Wanner U., Kemmler J., Weilenmann H. U., Egli T., Auling G. 1990; Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions.. Biodegradation 1:31–42
    [Google Scholar]
  41. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.. Arch Microbiol 129:395–400
    [Google Scholar]
  42. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov.. Arch Microbiol 134:286–294
    [Google Scholar]
  43. Zehnder A. J. B., Wuhrmann K. 1976; Titanium(III) citrate as a non-toxic oxidation-reduction buffering system for the culture of obligate anaerobes.. Science 194:1165–1166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-6-1919
Loading
/content/journal/micro/10.1099/00221287-143-6-1919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error