1887

Abstract

It is well known that glycogen and trehalose accumulate in yeast under nutrient starvation or entering into the stationary phase of growth, and that high levels of trehalose are found in heat-shocked cells. However, effects of various types of stress on trehalose, and especially on glycogen, are poorly documented. Taking into account that almost all genes encoding the enzymes involved in the metabolism of these two reserve carbohydrates contain between one and several copies of the stress-responsive element (STRE), an investigation was made of the possibility of a link between the potential transcriptional induction of these genes and the accumulation of glycogen and trehalose under different stress conditions. Using transcriptional fusions, it was found that all these genes were induced in a similar fashion, although to various extents, by temperature, osmotic and oxidative stresses. Experiments performed with an double mutant proved that the transcriptional induction of the genes encoding glycogen synthase () and trehalose-6-phosphate synthase () was needed for the small increase in glycogen and trehalose upon exposure to a mild heat stress and salt shock. However, the extent of transcriptional activation of these genes upon stresses in wild-type strains was not correlated with a proportional rise in either glycogen or trehalose. The major explanation for this lack of correlation comes from the fact that genes encoding the enzymes of the biosynthetic and of the biodegradative pathways were almost equally induced. Hence, trehalose and glycogen accumulated to much higher levels in cells lacking neutral trehalase or glycogen phosphoryiase exposed to stress conditions, which suggested that one of the major effects of stress in yeast is to induce a wasteful expenditure of energy by increasing the recycling of these molecules. We also found that transcriptional induction of STRE-controlled genes was abolished at temperatures above 40 °C, while induction was still observed for a heat-shock-element-regulated gene. Remarkably, trehalose accumulated to very high levels under this condition. This can be explained by a stimulation of trehalose synthase and inhibition of trehalase by high temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-1891
1997-06-01
2019-08-23
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-6-1891
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error