1887

Abstract

was isolated from feral house mice () during the course of a mouse plague in the state of Victoria, Australia. Two farms were sampled over a period of 7 months and a total of 447 isolates were collected. The isolates were characterized using the techniques of randomly amplified polymorphic DNA and multi-locus enzyme electrophoresis. The mean genetic diversity of this population ( = 0.24) was found to be substantially lower than the diversity of an population reported elsewhere for a single human host. Analysis of the allozyme data revealed that there were significant differences in the relative abundance of genotypes between the two localities sampled and among sample dates. Overall, however, spatial and temporal effects accounted for less than 5% of the genotypic diversity. Allele frequencies and the relative abundance of the more common genotypes did not differ between male and female hosts. The number of genotypes and genotype diversity increased as the age of the host increased, suggesting that the mice are continuing to acquire new clones throughout their life. The frequency of some alleles changed with respect to host age, which indicates that clone acquisition may not be a random process. It is argued that the low level of genetic diversity observed in this population of reflects the boom and bust nature of mouse population density in this region of Australia.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-2039
1997-06-01
2021-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/6/mic-143-6-2039.html?itemId=/content/journal/micro/10.1099/00221287-143-6-2039&mimeType=html&fmt=ahah

References

  1. Berry R. J., Bronson F. H. 1992; Life history and bioeconomy of the house mouse.. Biol Rev 67:519–550.
    [Google Scholar]
  2. Brown A. D. H., Feldman M. W., Nevo E. 1980; Multilocus structure of natural populations of Hordeum spontaneum.. Genetics 96:523–536.
    [Google Scholar]
  3. Caugant D. A., Levin B. R., Selander R. K. 1981; Genetic diversity and temporal variation in the E . coli populations of a human host. Genetics 98:467–490.
    [Google Scholar]
  4. Caugant D. A., Levin B. R., Lidin-Janson G., Whittam T. S., Svanborg Eden C.., Selander R. K. 1983; Genetic diversity and relationships among strains of Escherichia coli in the intestine and those causing urinary tract infections.. Prog Allergy 33:203–227.
    [Google Scholar]
  5. Caugant D. A., Levin B. R., Selander R. K. 1984; Distribution of multilocus genotypes of Escherichia coli withim and between host families.. J Hyg 92:377–384.
    [Google Scholar]
  6. Desjardins P., Picard B., Kaltenbock B., Elion J., Denamur E. 1995; Sex in Escherichia coli does not disrupt the clonal structure of the population: evidence from randomly amplified polymorphic DNA and restriction-fragment-length polymorphism.. J Mol Evol 41:440–448.
    [Google Scholar]
  7. Ewing W. H. 1986; Edwards and Ewing’s Identification of Erzterobacteriaceae, 4th edn. New York:. Elsevier
    [Google Scholar]
  8. Gordon D. M., Wexler M., Reardon T. B., Murphy P. J. 1995; The genetic structure of Rhizobium populations.. Soil Biol Biochem 27:491–499
    [Google Scholar]
  9. Guttman D. S., Dykuizen D. E. 1994; Clonal divergence in Escherichia coli as a result of recombination, not mutation.. Scienc 266:1380–1383
    [Google Scholar]
  10. Hebert P. D. N., Beaton M. J. 1989; Methodologies for Allozyme Analysis Using Cellulose Acetate Electrophoresis. Beaumont, TX:. Helena Laboratories.
    [Google Scholar]
  11. Krebs C. J., Singleton G. R, Kenny A. J. 1994; Six reasons why feral house mouse populations might have low recapture rates.. Wildl Res 21:559–567
    [Google Scholar]
  12. Maynard-Smith J., Smith N. H., O’Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Aclid Sci USA 90:4384–4388
    [Google Scholar]
  13. Milkman R. 1973; Electrophoretic variation in Escherichia coli from natural sources.. Science 182:1024–1026
    [Google Scholar]
  14. Miller R. D., Hartl D. L. 1986; Biotyping confirms a nearly clonal population structure in Escherichia coli.. Evolution 40:1–12
    [Google Scholar]
  15. Nei M. 1978; Estimation of average heterozygosity and genetic distance from a small number of individuals.. Genetics 89:583–590
    [Google Scholar]
  16. Nei M., Li W.-H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases.. Proc Natl Acad Sci USA 76:5269–5273
    [Google Scholar]
  17. Ochman H., Selander R. K. 1984; Standard reference strains of Escherichia coli from natural populations.. J Bacteriol 157:690–693
    [Google Scholar]
  18. Power D. A., McCuen P. L. 1988; Manual of BBL Products and L,iboratory Procedures, 6th edn. Cockeysville, MD:. Becton Dickinson Microbial Systems.
    [Google Scholar]
  19. Pupo G. M., Richardson B. J. 1988; Biochemical genetics of a natural population of Escherichia coli: seasonal changes in alleles and haplotypes.. Microbiology 141:1037–1044
    [Google Scholar]
  20. Rohlf F. J. 1993; Numerical taxomomy and multivariate analysis system, version 1.80. New York:. Exeter Software.
    [Google Scholar]
  21. Routman E., Miller R. D., Philips-Conroy J., Hartl D. L. 1985; Antibiotic resistance and population structure in Escherichia coli from free-ranging African yellow baboons.. Appl Environ Microbiol 50:749–754
    [Google Scholar]
  22. Savageau M. A. 1983; Escherichia coli habitats, cell types, and molecular mechanisms of gene control.. Am Nat 122:732–744
    [Google Scholar]
  23. Selander R. K., Levin B. R. 1980; Genetic diversity and structure in Escherichia coli.. Science 210:545–547
    [Google Scholar]
  24. Selander R. K., Caugant D. A., Ochman H., Muser J. M., Whittam T. S. 1986a; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics.. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  25. Selander R. K., Korhonen T. K., Vaisanen-Rhen V., Williams P. H., Pattison P. E., Caugant D. A. 1986b; Genetic relationships and clonal structure of strains of Escherichia coli causing neonatal septicaemia and meningitis.. Infect Immun 52:213–222
    [Google Scholar]
  26. Selander R. K., Caugant D. A., Whittam T. S. 1987; Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, Edited-by F. C. Neidhardt, J. L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter & H. E. Umbarger. Washington, DC:. American Society for Microbiology.1625–1648
    [Google Scholar]
  27. Singleton G. R. 1989; Population dynamics of an outbreak of house mice (Mus domesticus) in the mallee wheatlands of Australia - hypothesis of plague formation.. J Zoo1 (Lond) 219:495–515
    [Google Scholar]
  28. Singleton G. R., Redhead T. D. 1990; Structure and biology of house mouse populations that plague irregularly : an evolutionary perspective.. Biol J Linn Soc 41:285–300
    [Google Scholar]
  29. Souza V., Nguyen T. T., Hudson R. R., Piñero D., Lenski R. E. 1990; Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex ?. Proc Natl Acad Sci USA 89:8389–8393
    [Google Scholar]
  30. Whittam T. S. 1989; Clonal dynamics of Escherichia coli in its natural habitat.. Antonie Leeuwenhoek 55:23–32
    [Google Scholar]
  31. Whittam T. S., Ochman H., Selander R. K. 1983a; Geographic components of linkage disequilibrium in natural populations of Escherichia coli.. Mol Biol Evol 1:67–83
    [Google Scholar]
  32. Whittam T. S., Ochman H., Selander R. K. 1983b; Multilocus genetic structure in natural populations of Escherichia coli.. Natl Acad Sci USA 80:1751–1755
    [Google Scholar]
  33. Whittam T. S., Wolfe M. L., Wachsrnuth I. K., ∅rskov F., ∅rskov I., Wilson R. A. 1993; Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhoea.. Infect Immun 61:1619–1629
    [Google Scholar]
  34. Wang G., Whittam T. S., Berg C. M., Berg D. E. 1993; RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme electrophoresis for distinguishing related bacteria strains.. Nucleic Acids Res 21:5930–5933
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-6-2039
Loading
/content/journal/micro/10.1099/00221287-143-6-2039
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error