-
Volume 95,
Issue 5,
2014
Volume 95, Issue 5, 2014
- Review
-
-
‘Liver let die’: oxidative DNA damage and hepatotropic viruses
More LessChronic infections by the hepatotropic viruses hepatitis B virus (HBV) and hepatitis C virus (HCV) are major risk factors for the development of hepatocellular carcinoma (HCC). It is estimated that more than 700 000 individuals per year die from HCC, and around 80 % of HCC is attributable to HBV or HCV infection. Despite the clear clinical importance of virus-associated HCC, the underlying molecular mechanisms remain largely elusive. Oxidative stress, in particular DNA lesions associated with oxidative damage, play a major contributory role in carcinogenesis, and are strongly linked to the development of many cancers, including HCC. A large body of evidence demonstrates that both HBV and HCV induce hepatic oxidative stress, with increased oxidative DNA damage being observed both in infected individuals and in murine models of infection. Here, we review the impact of HBV and HCV on the incidence and repair of oxidative DNA damage. We begin by giving a brief overview of oxidative stress and the repair of DNA lesions induced by oxidative stress. We then review in detail the evidence surrounding the mechanisms by which both viruses stimulate oxidative stress, before focusing on how the viral proteins themselves may perturb the cellular response to oxidative DNA damage, impacting upon genome stability and thus hepatocarcinogenesis.
-
Louping ill virus: an endemic tick-borne disease of Great Britain
In Europe and Asia, Ixodid ticks transmit tick-borne encephalitis virus (TBEV), a flavivirus that causes severe encephalitis in humans but appears to show no virulence for livestock and wildlife. In the British Isles, where TBEV is absent, a closely related tick-borne flavivirus, named louping ill virus (LIV), is present. However, unlike TBEV, LIV causes a febrile illness in sheep, cattle, grouse and some other species, that can progress to fatal encephalitis. The disease is detected predominantly in animals from upland areas of the UK and Ireland. This distribution is closely associated with the presence of its arthropod vector, the hard tick Ixodes ricinus. The virus is a positive-strand RNA virus belonging to the genus Flavivirus, exhibiting a high degree of genetic homology to TBEV and other mammalian tick-borne viruses. In addition to causing acute encephalomyelitis in sheep, other mammals and some avian species, the virus is recognized as a zoonotic agent with occasional reports of seropositive individuals, particularly those whose occupation involves contact with sheep. Preventative vaccination in sheep is effective although there is no treatment for disease. Surveillance for LIV in Great Britain is limited despite an increased awareness of emerging arthropod-borne diseases and potential changes in distribution and epidemiology. This review provides an overview of LIV and highlights areas where further effort is needed to control this disease.
- Top
-
- Animal viruses
-
- RNA viruses
-
Deletions in the highly polymorphic region (HPR) of infectious salmon anaemia virus HPR0 haemagglutinin–esterase enhance viral fusion and influence the interaction with the fusion protein
Since the discovery of a non-virulent infectious salmon anaemia virus (ISAV) HPR0 variant, many studies have speculated on the functional role of deletions within the highly polymorphic region (HPR) of genomic segment 6, which codes for the haemagglutinin–esterase (HE) protein. To address this issue, mutant HE proteins with deletions in their HPR were generated from the Scottish HPR0 template (NWM10) and fusion-inducing activity was measured using lipid (octadecyl rhodamine B) and content mixing assays (firefly luciferase). Segment six HPR was found to have a strong influence on ISAV fusion, and deletions in this near-membrane region predominantly increased the fusion-inducing ability of the resulting HE proteins. The position and length of the HPR deletions were not significant factors, suggesting that they may affect fusion non-specifically. In comparison, the amino acid composition of the associated fusion (F) protein was a more crucial criterion. Antibody co-patching and confocal fluorescence demonstrated that the HE and F proteins were highly co-localized, forming defined clusters on the cell surface post-transfection. The binding of erythrocyte ghosts on the attachment protein caused a reduction in the percentage of co-localization, suggesting that ISAV fusion might be triggered through physical separation of the F and HE proteins. In this process, HPR deletion appeared to modulate and reduce the strength of interaction between the two glycoproteins, causing more F protein to be released and activated. This work provides a first insight into the mechanism of virulence acquisition through HPR deletion, with fusion enhancement acting as a major contributing factor.
-
Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus
In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya.
-
Characterization of an enhanced antigenic change in the pandemic 2009 H1N1 influenza virus haemagglutinin
Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.
-
Vaccination with the RSV fusion protein formulated with a combination adjuvant induces long-lasting protective immunity
More LessRespiratory syncytial virus (RSV) is one of the primary causative agents of upper and lower respiratory tract infections in young children, in particular infants. Recently, we reported the protective efficacy of a RSV vaccine formulation consisting of a truncated version of the fusion (F) protein formulated with a Toll-like receptor (TLR) agonist and an immunostimulatory peptide in a carrier system (ΔF/TriAdj). To evaluate the duration of immunity induced by this vaccine candidate, we carried out long-term trials. The ΔF was formulated with triple adjuvant (TriAdj) containing either polyinosinic : polycytidylic acid (polyI : C) or cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) and administered intranasally to mice. One year after the second vaccination all mice were challenged with RSV. Both ΔF/TriAdj formulations mediated the induction of high levels of IgG1, IgG2a and virus-neutralizing antibodies, and IgA in the lungs. Based on the numbers of IFN-γ- and IL-5-secreting cells in the spleen, the immune response was slightly T-helper cell type 1 (Th1)-biased. This was confirmed by the presence of F85–93-specific CD8+ effector T cells in the lungs of both ΔF/TriAdj(polyI : C)- and ΔF/TriAdj(CpG)-immunized mice. Both ΔF/TriAdj formulations induced RSV-specific CD8+ T cells. However, ΔF/TriAdj(polyI : C) generated significantly higher IgG affinity maturation and higher numbers of RSV-specific CD8+ effector memory T cells in lungs and CD8+ central memory T cells in spleen and lymph nodes than ΔF/TriAdj(CpG). After RSV challenge, no virus replication and no evidence of vaccine-induced pathology were detected in mice immunized with either of the ΔF/TriAdj formulations, demonstrating that the duration of immunity induced with these vaccines is at least one year.
-
Genomic and phylogenetic characterization of viruses included in the Manzanilla and Oropouche species complexes of the genus Orthobunyavirus, family Bunyaviridae
A thorough characterization of the genetic diversity of viruses present in vector and vertebrate host populations is essential for the early detection of and response to emerging pathogenic viruses, yet genetic characterization of many important viral groups remains incomplete. The Simbu serogroup of the genus Orthobunyavirus, family Bunyaviridae, is an example. The Simbu serogroup currently consists of a highly diverse group of related arboviruses that infect both humans and economically important livestock species. Here, we report complete genome sequences for 11 viruses within this group, with a focus on the large and poorly characterized Manzanilla and Oropouche species complexes. Phylogenetic and pairwise divergence analyses indicated the presence of high levels of genetic diversity within these two species complexes, on a par with that seen among the five other species complexes in the Simbu serogroup. Based on previously reported divergence thresholds between species, the data suggested that these two complexes should actually be divided into at least five species. Together these five species formed a distinct phylogenetic clade apart from the rest of the Simbu serogroup. Pairwise sequence divergences among viruses of this clade and viruses in other Simbu serogroup species complexes were similar to levels of divergence among the other orthobunyavirus serogroups. The genetic data also suggested relatively high levels of natural reassortment, with three potential reassortment events present, including two well-supported events involving viruses known to infect humans.
-
A single amino acid mutation, R42A, in the Newcastle disease virus matrix protein abrogates its nuclear localization and attenuates viral replication and pathogenicity
The Newcastle disease virus (NDV) matrix (M) protein is a highly basic and nucleocytoplasmic shuttling viral protein. Previous study has demonstrated that the N-terminal 100 aa of NDV M protein are somewhat acidic overall, but the remainder of the polypeptide is strongly basic. In this study, we investigated the role of the N-terminal basic residues in the subcellular localization of M protein and in the replication and pathogenicity of NDV. We found that mutation of the basic residue arginine (R) to alanine (A) at position 42 disrupted M’s nuclear localization. Moreover, a recombinant virus with R42A mutation in the M protein reduced viral replication in DF-1 cells and attenuated the virulence and pathogenicity of the virus in chickens. This is the first report to show that a basic residue mutation in the NDV M protein abrogates its nuclear localization and attenuates viral replication and pathogenicity.
-
Two major mumps genotype G variants dominated recent mumps outbreaks in the Netherlands (2009–2012)
During three seasons of mumps outbreaks in the Netherlands (September 2009–August 2012), 822 mumps cases were laboratory-confirmed at the National Institute for Public Health and the Environment (RIVM). Most patients were vaccinated young adults. Given the protracted endemic circulation, we studied the genetic diversity and changes of mumps virus over a period of 3 years. Phylogenetic analysis of the small hydrophobic (SH) gene (316 bp) was performed on a representative set of 808 specimens that tested positive for mumps via PCR. Additionally, the haemagglutinin/neuraminidase (HN) gene (1749 bp) and fusion (F) gene (1617 bp) were sequenced for a subset of samples (n = 17). Correlations between different sequence types and epidemiological and clinical data were investigated. The outbreaks in the Netherlands were dominated by two SH gene sequence types within genotype G, termed MuVs/Delft.NLD/03.10 (variant 1) and MuVs/Scheemda.NLD/12.10 (variant 2). Sequence analysis of the HN and F genes indicated that the outbreaks were initiated by separately introduced genetic lineages. The predominance of variant 2 by the end of the first outbreak season could not be explained by any of the epidemiological factors investigated. Orchitis was more frequently reported in males infected with variant 2, irrespective of age and vaccination status. These findings illustrate genetic heterogeneity of an emerging mumps genotype, and raise questions about the mechanisms driving mumps epidemiology and immunity in relation to vaccination.
- Positive-strand RNA
-
Protection from lethal challenge in a neonatal mouse model by circulating recombinant form coxsackievirus A16 vaccine candidates
Circulating coxsackievirus A16 (CA16) is a major cause of hand, foot and mouth disease (HFMD) in South-east Asia. At present, there is no vaccine against CA16. Pathogenic animal models that are sensitive to diverse circulating CA16 viruses would be desirable for vaccine development and evaluation. In this study, we isolated and characterized several circulating CA16 viruses from recent HFMD patients. These CA16 viruses currently circulating in humans were highly pathogenic in a newly developed neonatal mouse model; we also observed and analysed the pathogenesis of representative circulating recombinant form CA16 viruses. An inactivated CA16 vaccine candidate, formulated with alum adjuvant and containing submicrogram quantities of viral proteins, protected neonatal mice born to immunized female mice from lethal-dose challenge with a series of CA16 viruses. Further analysis of humoral immunity showed that antibody elicited from both the immunized dams and their pups could neutralize various lethal viruses by a cytopathic effect in vitro. Moreover, viral titres and loads in the tissues of challenged pups in the vaccine group were far lower than those in the control group, and some were undetectable. This lethal-challenge model using pathogenic CA16 viruses and the vaccine candidates that mediated protection in this model could be useful tools for the future development and evaluation of CA16 vaccines.
-
Identification and genetic characterization of a novel picornavirus from chickens
A novel picornavirus from commercial broiler chickens (Gallus gallus domesticus) has been identified and genetically characterized. The viral genome consists of a single-stranded, positive-sense RNA genome of >9243 nt excluding the poly(A) tail and as such represents one of the largest picornavirus genomes reported to date. The virus genome is GC-rich with a G+C content of 54.5 %. The genomic organization is similar to other picornaviruses: 5′ UTR–L–VP0–VP3–VP1–2A–2B–2C–3A–3B–3C–3D–3′ UTR. The partially characterized 5′ UTR of >373 nt appears to possess a type II internal ribosomal entry site (IRES), which is also found in members of the genera Aphthovirus and Cardiovirus. This IRES exhibits significant sequence similarity to turkey ‘gallivirus A’. The 3′ UTR of 278 nt contains the conserved 48 nt ‘barbell-like’ structure identified in ‘passerivirus’, ‘gallivirus’, Avihepatovirus and some Kobuvirus genus members. A predicted large open reading frame (ORF) of 8592 nt encodes a potential polyprotein precursor of 2864 amino acids. In addition, the virus contains a predicted large L protein of 462 amino acids. Pairwise sequence comparisons, along with phylogenetic analysis revealed the highest percentage identity to ‘Passerivirus A’ (formerly called turdivirus 1), forming a monophyletic group across the P1, P2 and P3 regions, with <40, <40 and <50 % amino acid identity respectively. Reduced identity was observed against ‘gallivirus A’ and members of the Kobuvirus genus. Quantitative PCR analysis estimated a range of 4×105 to 5×108 viral genome copies g-1 in 22 (73 %) of 30 PCR-positive faeces. Based on sequence and phylogenetic analysis, we propose that this virus is the first member of a potential novel genus within the family Picornaviridae. Further studies are required to investigate the pathogenic potential of this virus within the avian host.
-
Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus
Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.
- Double-strand RNA
-
Whole-genome analysis of bovine rotavirus species C isolates obtained in Yamagata, Japan, 2003–2010
More LessAn epidemic of diarrhoea in adult cows occurred at a total of 105 dairy farms in Yamagata Prefecture, Japan, between 2003 and 2010. Reverse transcription-PCR diagnostic tests revealed the presence of bovine rotavirus species C (RVCs) in samples from each of six farms (5.7 %). In this study, we determined the full-length nucleotide sequences of 11 RNA segments from six bovine RVC strains and investigated genetic diversity among them, including two bovine RVC strains identified in a previous study. Comparisons of all segmental nucleotide and the deduced amino acid sequences among bovine RVCs indicated high identities across all genes except for the VP4 gene. Phylogenetic analysis of each gene revealed that the six bovine RVCs belonged to a bovine cluster distinct from human and porcine RVCs. Bovine RVC strains could be clearly divided into two lineages of the VP4 genes. The nucleotide sequence identity for VP4 genes between lineage I and II was 83.7–84.8 %. Moreover, bovine RVC strains belonging to lineage I exhibited one amino acid deletion and three amino acid insertions, which differed for those strains belonging to lineage II. Our data suggest that multiple bovine RVCs originated from a common ancestor, but had different genetic backgrounds, not only in Yamagata Prefecture but also in the rest of Japan.
- Large DNA
-
Sulfated galactans isolated from the red seaweed Gracilaria fisheri target the envelope proteins of white spot syndrome virus and protect against viral infection in shrimp haemocytes
More LessThe present study was aimed at evaluating an underlying mechanism of the antiviral activity of the sulfated galactans (SG) isolated from the red seaweed Gracilaria fisheri against white spot syndrome virus (WSSV) infection in haemocytes of the black tiger shrimp Penaeus monodon. Primary culture of haemocytes from Penaeus monodon was performed and inoculated with WSSV, after which the cytopathic effect (CPE), cell viability and viral load were determined. Haemocytes treated with WSSV-SG pre-mix showed decreased CPE, viral load and cell mortality from the viral infection. Solid-phase virus-binding assays revealed that SG bound to WSSV in a dose-related manner. Far Western blotting analysis indicated that SG bound to VP 26 and VP 28 proteins of WSSV. In contrast to the native SG, desulfated SG did not reduce CPE and cell mortality, and showed low binding activity with WSSV. The current study suggests that SG from Gracilaria fisheri elicits its anti-WSSV activity by binding to viral proteins that are important for the process of viral attachment to the host cells. It is anticipated that the sulfate groups of SG are important for viral binding.
-
A shutoff and exonuclease mutant of murine gammaherpesvirus-68 yields infectious virus and causes RNA loss in type I interferon receptor knockout cells
More LessSignificant loss of RNA followed by severely reduced cellular protein pool, a phenomenon termed host shutoff, is associated with a number of lytic virus infections and is a critical player in viral pathogenesis. Until recently, viral DNA exonucleases were associated only with processing of viral genomic DNA and its encapsidation. However, recent observations have identified host shutoff and exonuclease function for the highly conserved viral exonucleases in γ-herpesviruses, which include Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus and the mouse model murine gammaherpesvirus-68, also referred to as MHV-68. In this study, we show that although ablation of the MHV-68 exonuclease ORF37 caused a restrictive phenotype in WT IFN-α/β receptor-positive cells such as NIH 3T3, lack of ORF37 was tolerated in cells lacking the IFN-α/β receptor: the ORF37Stop virus was capable of forming infectious particles and caused loss of mRNA in IFN-α/β receptor knockout cells. Moreover, ORF37Stop virus was able to establish lytic infection in the lungs of mice lacking the IFN-α/β receptor. These observations provide evidence that lytic MHV-68 infection and subsequent loss of mRNA can take place independently of ORF37. Moreover, efficient growth of ORF37Stop virus also identifies a role for this family of viral nucleases in providing a window of opportunity for virus growth by overcoming type I IFN-dependent responses.
-
Singapore grouper iridovirus-encoded semaphorin homologue (SGIV-sema) contributes to viral replication, cytoskeleton reorganization and inhibition of cellular immune responses
More LessSemaphorins are a large, phylogenetically conserved family of proteins that are involved in a wide range of biological processes including axonal steering, organogenesis, neoplastic transformation, as well as immune responses. In this study, a novel semaphorin homologue gene belonging to the Singapore grouper iridovirus (SGIV), ORF155R (termed SGIV-sema), was cloned and characterized. The coding region of SGIV-sema is 1728 bp in length, encoding a predicted protein with 575 aa. SGIV-sema contains a ~370 aa N-terminal Sema domain, a conserved plexin-semaphorin-integrin (PSI) domain, and an immunoglobulin (Ig)-like domain near the C terminus. SGIV-sema is an early gene product during viral infection and predominantly distributed in the cytoplasm with a speckled and clubbed pattern of appearance. Functionally, SGIV-sema could promote viral replication during SGIV infection in vitro, with no effect on the proliferation of host cells. Intriguingly, ectopically expressed SGIV-sema could alter the cytoskeletal structure of fish cells, characterized by a circumferential ring of microtubules near the nucleus and a disrupted microfilament organization. Furthermore, SGIV-sema was able to attenuate the cellular immune response, as demonstrated by decreased expression of inflammation/immune-related genes such as IL-8, IL-15, TNF-α and mediator of IRF3 activation (MITA), in SGIV-sema-expressing cells before and after SGIV infection. Ultimately, our study identified a novel, functional SGIV gene that could regulate cytoskeletal structure, immune responses and facilitate viral replication.
- Retroviruses
-
Phosphorylation of human immunodeficiency virus type 1 capsid protein at serine 16, required for peptidyl-prolyl isomerase-dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2
We reported previously that Pin1 facilitates human immunodeficiency virus type 1 (HIV-1) uncoating by interacting with the capsid core through the phosphorylated Ser16-Pro17 motif. However, the specific kinase responsible for Ser16 phosphorylation has remained unknown. Here, we showed that virion-associated extracellular signal-regulated kinase 2 (ERK2) phosphorylates Ser16. The characterization of immature virions produced by exposing chronically HIV-1LAV-1-infected CEM/LAV-1 cells to 10 µM saquinavir indicated that Ser16 is phosphorylated after the initiation of Pr55Gag processing. Furthermore, a mass spectrometry-based in vitro kinase assay demonstrated that ERK2 specifically phosphorylated the Ser16 residue in the Ser16-Pro17 motif-containing substrate. The treatment of CEM/LAV-1 cells with the ERK2 inhibitor sc-222229 decreased the Ser16 phosphorylation level inside virions, and virus partially defective in Ser16 phosphorylation showed impaired reverse transcription and attenuated replication owing to attenuated Pin1-dependent uncoating. Furthermore, the suppression of ERK2 expression by RNA interference in CEM/LAV-1 cells resulted in suppressed ERK2 packaging inside virions and decreased the Ser16 phosphorylation level inside virions. Interestingly, the ERK2-packaging-defective virus showed impaired reverse transcription and attenuated HIV-1 replication. Taken together, these findings provide insights into the as-yet-obscure processes in Pin1-dependent HIV-1 uncoating.
- Top
- Plant viruses
-
- RNA
-
The asparagine residue in the FRNK box of potyviral helper-component protease is critical for its small RNA binding and subcellular localization
More LessThe multifunctional potyviral helper-component protease (HcPro) contains variable regions with some functionally conserved domains, such as the FRNK box. Natural variants occur at the FRNK box, a conserved central domain, known for its role in RNA binding and RNAi suppression activities, although no dominant natural variants for the N182 residue are known to occur. Here, a mutant at HcProN182L was developed to investigate its role in natural populations. Using in vitro studies, we found an increase in the small RNA (sRNA) binding potential of HcProN182L without affecting its protein–protein interaction properties, suggesting that the presence of N182 is critical to maintain threshold levels of sRNAs, but does not interfere in the self-interaction of HcPro. Furthermore, we found that expression of HcProN182L in Nicotiana benthamiana affected plant growth. Transient expression of HcProN182L induced reporter gene expression in 16c GFP transgenic plants more than HcPro did, suggesting that replacement of asparagine in the FRNK box favours RNA silencing suppression. HcPro was found to be distributed in the nucleus and cytoplasm, whereas HcProN182L was observed only in cytoplasmic inclusion bodies in N. benthamiana leaves, when fused to a GFP tag and expressed by agro-infiltration, suggesting mutation favours oligomerization of HcPro. These findings suggest that amino acid N182 of the conserved FRNK box may regulate RNA silencing mechanisms, and is required for maintenance of the subcellular localization of the protein for its multi-functionality. Hence, the N182 residue of the FRNK box seems to be indispensable for potyvirus infection during evolution.
- DNA
-
Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe
The recent identification of a new nanovirus, pea necrotic yellow dwarf virus, from pea in Germany prompted us to survey wild and cultivated legumes for nanovirus infections in several European countries. This led to the identification of two new nanoviruses: black medic leaf roll virus (BMLRV) and pea yellow stunt virus (PYSV), each considered a putative new species. The complete genomes of a PYSV isolate from Austria and three BMLRV isolates from Austria, Azerbaijan and Sweden were sequenced. In addition, the genomes of five isolates of faba bean necrotic yellows virus (FBNYV) from Azerbaijan and Spain and those of four faba bean necrotic stunt virus (FBNSV) isolates from Azerbaijan were completely sequenced, leading to the first identification of FBNSV occurring in Europe. Sequence analyses uncovered evolutionary relationships, extensive reassortment and potential remnants of mixed nanovirus infections, as well as intra- and intercomponent recombination events within the nanovirus genomes. In some virus isolates, diverse types of the same genome component (paralogues) were observed, a type of genome complexity not described previously for any member of the family Nanoviridae. Moreover, infectious and aphid-transmissible nanoviruses from cloned genomic DNAs of FBNYV and BMLRV were reconstituted that, for the first time, allow experimental reassortments for studying the genome functions and evolution of these nanoviruses.
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
