1887

Abstract

Significant loss of RNA followed by severely reduced cellular protein pool, a phenomenon termed host shutoff, is associated with a number of lytic virus infections and is a critical player in viral pathogenesis. Until recently, viral DNA exonucleases were associated only with processing of viral genomic DNA and its encapsidation. However, recent observations have identified host shutoff and exonuclease function for the highly conserved viral exonucleases in γ-herpesviruses, which include Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus and the mouse model murine gammaherpesvirus-68, also referred to as MHV-68. In this study, we show that although ablation of the MHV-68 exonuclease ORF37 caused a restrictive phenotype in WT IFN-α/β receptor-positive cells such as NIH 3T3, lack of ORF37 was tolerated in cells lacking the IFN-α/β receptor: the ORF37Stop virus was capable of forming infectious particles and caused loss of mRNA in IFN-α/β receptor knockout cells. Moreover, ORF37Stop virus was able to establish lytic infection in the lungs of mice lacking the IFN-α/β receptor. These observations provide evidence that lytic MHV-68 infection and subsequent loss of mRNA can take place independently of ORF37. Moreover, efficient growth of ORF37Stop virus also identifies a role for this family of viral nucleases in providing a window of opportunity for virus growth by overcoming type I IFN-dependent responses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059329-0
2014-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/5/1135.html?itemId=/content/journal/jgv/10.1099/vir.0.059329-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [View Article][PubMed]
    [Google Scholar]
  2. Bagnéris C., Briggs L. C., Savva R., Ebrahimi B., Barrett T. E. 2011; Crystal structure of a KSHV-SOX-DNA complex: insights into the molecular mechanisms underlying DNase activity and host shutoff. Nucleic Acids Res 39:5744–5756 [View Article][PubMed]
    [Google Scholar]
  3. Barton E. S., Lutzke M. L., Rochford R., Virgin H. W. IV 2005; Alpha/beta interferons regulate murine gammaherpesvirus latent gene expression and reactivation from latency. J Virol 79:14149–14160 [View Article][PubMed]
    [Google Scholar]
  4. Barton E., Mandal P., Speck S. H. 2011; Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397 [View Article][PubMed]
    [Google Scholar]
  5. Buisson M., Géoui T., Flot D., Tarbouriech N., Ressing M. E., Wiertz E. J., Burmeister W. P. 2009; A bridge crosses the active-site canyon of the Epstein–Barr virus nuclease with DNase and RNase activities. J Mol Biol 391:717–728 [View Article][PubMed]
    [Google Scholar]
  6. Chen Z., Li Y., Krug R. M. 1999; Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J 18:2273–2283 [View Article][PubMed]
    [Google Scholar]
  7. Covarrubias S., Richner J. M., Clyde K., Lee Y. J., Glaunsinger B. A. 2009; Host shutoff is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm. J Virol 83:9554–9566 [View Article][PubMed]
    [Google Scholar]
  8. Covarrubias S., Gaglia M. M., Kumar G. R., Wong W., Jackson A. O., Glaunsinger B. A. 2011; Coordinated destruction of cellular messages in translation complexes by the gammaherpesvirus host shutoff factor and the mammalian exonuclease Xrn1. PLoS Pathog 7:e1002339 [View Article][PubMed]
    [Google Scholar]
  9. Dauber B., Pelletier J., Smiley J. R. 2011; The herpes simplex virus 1 vhs protein enhances translation of viral true late mRNAs and virus production in a cell type-dependent manner. J Virol 85:5363–5373 [View Article][PubMed]
    [Google Scholar]
  10. DeLuca N. A., Schaffer P. A. 1987; Activities of herpes simplex virus type 1 (HSV-1) ICP4 genes specifying nonsense peptides. Nucleic Acids Res 15:4491–4511 [View Article][PubMed]
    [Google Scholar]
  11. Dutia B. M., Allen D. J., Dyson H., Nash A. A. 1999; Type I interferons and IRF-1 play a critical role in the control of a gammaherpesvirus infection. Virology 261:173–179 [View Article][PubMed]
    [Google Scholar]
  12. Ebrahimi B., Dutia B. M., Roberts K. L., Garcia-Ramirez J. J., Dickinson P., Stewart J. P., Ghazal P., Roy D. J., Nash A. A. 2003; Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J Gen Virol 84:99–109 [View Article][PubMed]
    [Google Scholar]
  13. Efstathiou S., Ho Y. M., Minson A. C. 1990; Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol 71:1355–1364 [View Article][PubMed]
    [Google Scholar]
  14. Fenwick M. L., McMenamin M. M. 1984; Early virion-associated suppression of cellular protein synthesis by herpes simplex virus is accompanied by inactivation of mRNA. J Gen Virol 65:1225–1228 [View Article][PubMed]
    [Google Scholar]
  15. Geere H. M., Ligertwood Y., Templeton K. M., Bennet I., Gangadharan B., Rhind S. M., Nash A. A., Dutia B. M. 2006; The M4 gene of murine gammaherpesvirus 68 modulates latent infection. J Gen Virol 87:803–807 [View Article][PubMed]
    [Google Scholar]
  16. Glaunsinger B., Ganem D. 2004a; Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J Exp Med 200:391–398 [View Article][PubMed]
    [Google Scholar]
  17. Glaunsinger B., Ganem D. 2004b; Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol Cell 13:713–723 [View Article][PubMed]
    [Google Scholar]
  18. Glaunsinger B., Chavez L., Ganem D. 2005; The exonuclease and host shutoff functions of the SOX protein of Kaposi’s sarcoma-associated herpesvirus are genetically separable. J Virol 79:7396–7401 [View Article][PubMed]
    [Google Scholar]
  19. Hardwicke M. A., Sandri-Goldin R. M. 1994; The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68:4797–4810[PubMed]
    [Google Scholar]
  20. Hardy W. R., Sandri-Goldin R. M. 1994; Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol 68:7790–7799[PubMed]
    [Google Scholar]
  21. Karr B. M., Read G. S. 1999; The virion host shutoff function of herpes simplex virus degrades the 5′ end of a target mRNA before the 3′ end. Virology 264:195–204 [View Article][PubMed]
    [Google Scholar]
  22. Karsai A., Müller S., Platz S., Hauser M. T. 2002; Evaluation of a homemade SYBR green I reaction mixture for real-time PCR quantification of gene expression. Biotechniques 32:790–792, 794–796[PubMed]
    [Google Scholar]
  23. Kwong A. D., Frenkel N. 1987; Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci U S A 84:1926–1930 [View Article][PubMed]
    [Google Scholar]
  24. Lieber M. R. 1997; The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19:233–240 [View Article][PubMed]
    [Google Scholar]
  25. Martinez R., Sarisky R. T., Weber P. C., Weller S. K. 1996; Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol 70:2075–2085[PubMed]
    [Google Scholar]
  26. Messerle M., Crnkovic I., Hammerschmidt W., Ziegler H., Koszinowski U. H. 1997; Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 94:14759–14763 [View Article][PubMed]
    [Google Scholar]
  27. Milligan S., Robinson M., O’Donnell E., Blackbourn D. J. 2004; Inflammatory cytokines inhibit Kaposi’s sarcoma-associated herpesvirus lytic gene transcription in in vitro-infected endothelial cells. J Virol 78:2591–2596 [View Article][PubMed]
    [Google Scholar]
  28. Nash A. A., Dutia B. M., Stewart J. P., Davison A. J. 2001; Natural history of murine γ-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356:569–579 [View Article][PubMed]
    [Google Scholar]
  29. Oroskar A. A., Read G. S. 1987; A mutant of herpes simplex virus type 1 exhibits increased stability of immediate-early (alpha) mRNAs. J Virol 61:604–606[PubMed]
    [Google Scholar]
  30. Oroskar A. A., Read G. S. 1989; Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J Virol 63:1897–1906[PubMed]
    [Google Scholar]
  31. Page H. G., Read G. S. 2010; The virion host shutoff endonuclease (UL41) of herpes simplex virus interacts with the cellular cap-binding complex eIF4F. J Virol 84:6886–6890 [View Article][PubMed]
    [Google Scholar]
  32. Phelan A., Carmo-Fonseca M., McLaughlan J., Lamond A. I., Clements J. B. 1993; A herpes simplex virus type 1 immediate-early gene product, IE63, regulates small nuclear ribonucleoprotein distribution. Proc Natl Acad Sci U S A 90:9056–9060 [View Article][PubMed]
    [Google Scholar]
  33. Pierce A. T., DeSalvo J., Foster T. P., Kosinski A., Weller S. K., Halford W. P. 2005; Beta interferon and gamma interferon synergize to block viral DNA and virion synthesis in herpes simplex virus-infected cells. J Gen Virol 86:2421–2432 [View Article][PubMed]
    [Google Scholar]
  34. Richner J. M., Clyde K., Pezda A. C., Cheng B. Y., Wang T., Kumar G. R., Covarrubias S., Coscoy L., Glaunsinger B. 2011; Global mRNA degradation during lytic gammaherpesvirus infection contributes to establishment of viral latency. PLoS Pathog 7:e1002150 [View Article][PubMed]
    [Google Scholar]
  35. Rowe M., Glaunsinger B., van Leeuwen D., Zuo J., Sweetman D., Ganem D., Middeldorp J., Wiertz E. J., Ressing M. E. 2007; Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104:3366–3371 [View Article][PubMed]
    [Google Scholar]
  36. Sandri-Goldin R. M. 2011; The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol 6:1261–1277 [View Article][PubMed]
    [Google Scholar]
  37. Schek N., Bachenheimer S. L. 1985; Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells. J Virol 55:601–610[PubMed]
    [Google Scholar]
  38. Smiley J. R. 2004; Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase?. J Virol 78:1063–1068 [View Article][PubMed]
    [Google Scholar]
  39. Song M. J., Hwang S., Wong W. H., Wu T. T., Lee S., Liao H. I., Sun R. 2005; Identification of viral genes essential for replication of murine γ-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102:3805–3810 [View Article][PubMed]
    [Google Scholar]
  40. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740[PubMed]
    [Google Scholar]
  41. Strom T., Frenkel N. 1987; Effects of herpes simplex virus on mRNA stability. J Virol 61:2198–2207[PubMed]
    [Google Scholar]
  42. Sunil-Chandra N. P., Efstathiou S., Arno J., Nash A. A. 1992a; Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol 73:2347–2356 [View Article][PubMed]
    [Google Scholar]
  43. Sunil-Chandra N. P., Efstathiou S., Nash A. A. 1992b; Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73:3275–3279 [View Article][PubMed]
    [Google Scholar]
  44. Taddeo B., Roizman B. 2006; The virion host shutoff protein (UL41) of herpes simplex virus 1 is an endoribonuclease with a substrate specificity similar to that of RNase A. J Virol 80:9341–9345 [View Article][PubMed]
    [Google Scholar]
  45. Taddeo B., Zhang W., Roizman B. 2006; The U(L)41 protein of herpes simplex virus 1 degrades RNA by endonucleolytic cleavage in absence of other cellular or viral proteins. Proc Natl Acad Sci U S A 103:2827–2832 [View Article][PubMed]
    [Google Scholar]
  46. Takaoka A., Yanai H., Kondo S., Duncan G., Negishi H., Mizutani T., Kano S., Honda K., Ohba Y.other authors 2005; Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249 [View Article][PubMed]
    [Google Scholar]
  47. Tomlinson C. G., Atack J. M., Chapados B., Tainer J. A., Grasby J. A. 2010; Substrate recognition and catalysis by flap endonucleases and related enzymes. Biochem Soc Trans 38:433–437 [View Article][PubMed]
    [Google Scholar]
  48. Towler J. C., Ebrahimi B., Lane B., Davison A. J., Dargan D. J. 2012; Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines. J Gen Virol 93:1046–1058 [View Article][PubMed]
    [Google Scholar]
  49. Weck K. E., Dal Canto A. J., Gould J. D., O’Guin A. K., Roth K. A., Saffitz J. E., Speck S. H., Virgin H. W. 1997; Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-gamma responsiveness: a new model for virus-induced vascular disease. Nat Med 3:1346–1353 [View Article][PubMed]
    [Google Scholar]
  50. Weller S. K., Seghatoleslami M. R., Shao L., Rowse D., Carmichael E. P. 1990; The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. J Gen Virol 71:2941–2952 [View Article][PubMed]
    [Google Scholar]
  51. Yalamanchili P., Harris K., Wimmer E., Dasgupta A. 1996; Inhibition of basal transcription by poliovirus: a virus- encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J Virol 70:2922–2929[PubMed]
    [Google Scholar]
  52. Zelus B. D., Stewart R. S., Ross J. 1996; The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro. J Virol 70:2411–2419[PubMed]
    [Google Scholar]
  53. Zuo J., Thomas W., van Leeuwen D., Middeldorp J. M., Wiertz E. J., Ressing M. E., Rowe M. 2008; The DNase of gammaherpesviruses impairs recognition by virus-specific CD8+ T cells through an additional host shutoff function. J Virol 82:2385–2393 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059329-0
Loading
/content/journal/jgv/10.1099/vir.0.059329-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error