1887

Abstract

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.060939-0
2014-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/5/1104.html?itemId=/content/journal/jgv/10.1099/vir.0.060939-0&mimeType=html&fmt=ahah

References

  1. Acharya R. , Fry E. , Stuart D. , Fox G. , Rowlands D. , Brown F. . ( 1989; ). The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. . Nature 337:, 709–716. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aktas S. , Samuel A. R. . ( 2000; ). Identification of antigenic epitopes on the foot and mouth disease virus isolate O1/Manisa/Turkey/69 using monoclonal antibodies. . Rev Sci Tech 19:, 744–753.[PubMed]
    [Google Scholar]
  3. Alexandersen S. , Zhang Z. , Donaldson A. I. , Garland A. J. M. . ( 2003; ). The pathogenesis and diagnosis of foot-and-mouth disease. . J Comp Pathol 129:, 1–36. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ayelet G. , Mahapatra M. , Gelaye E. , Egziabher B. G. , Rufeal T. , Sahle M. , Ferris N. P. , Wadsworth J. , Hutchings G. H. , Knowles N. J. . ( 2009; ). Genetic characterization of foot-and-mouth disease viruses, Ethiopia, 1981–2007. . Emerg Infect Dis 15:, 1409–1417. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bahnemann H. G. . ( 1975; ). Binary ethylenimine as an inactivant for foot-and-mouth disease virus and its application for vaccine production. . Arch Virol 47:, 47–56. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bahnemann H. G. . ( 1990; ). Inactivation of viral antigens for vaccine preparation with particular reference to the application of binary ethylenimine. . Vaccine 8:, 299–303. [CrossRef] [PubMed]
    [Google Scholar]
  7. Barnett P. V. , Samuel A. R. , Pullen L. , Ansell D. , Butcher R. N. , Parkhouse R. M. . ( 1998; ). Monoclonal antibodies, against O1 serotype foot-and-mouth disease virus, from a natural bovine host, recognize similar antigenic features to those defined by the mouse. . J Gen Virol 79:, 1687–1697.[PubMed]
    [Google Scholar]
  8. Baxt B. , Garmendia A. E. , Morgan D. O. . ( 1989; ). Characterization of anti-idiotypic antibodies generated against foot-and-mouth disease virus neutralizing monoclonal antibodies. . Viral Immunol 2:, 103–113. [CrossRef] [PubMed]
    [Google Scholar]
  9. Borley D. W. . ( 2013; ). Epitope dominance studies with serotype O Foot-and-Mouth Disease. DPhil thesis, University of Oxford;, UK:.
    [Google Scholar]
  10. Borley D. W. , Mahapatra M. , Paton D. J. , Esnouf R. M. , Stuart D. I. , Fry E. E. . ( 2013; ). Evaluation and use of in-silico structure-based epitope prediction with foot-and-mouth disease virus. . PLoS ONE 8:, e61122. [CrossRef] [PubMed]
    [Google Scholar]
  11. Brehm K. E. , Kumar N. , Thulke H. H. , Haas B. . ( 2008; ). High potency vaccines induce protection against heterologous challenge with foot-and-mouth disease virus. . Vaccine 26:, 1681–1687. [CrossRef] [PubMed]
    [Google Scholar]
  12. Crowther J. R. , Farias S. , Carpenter W. C. , Samuel A. R. . ( 1993; ). Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. . J Gen Virol 74:, 1547–1553. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dunn C. S. , Samuel A. R. , Pullen L. A. , Anderson J. . ( 1998; ). The biological relevance of virus neutralisation sites for virulence and vaccine protection in the guinea pig model of foot-and-mouth disease. . Virology 247:, 51–61. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ellard F. M. , Drew J. , Blakemore W. E. , Stuart D. I. , King A. M. . ( 1999; ). Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. . J Gen Virol 80:, 1911–1918.[PubMed]
    [Google Scholar]
  15. Ferris N. P. , Abrescia N. G. A. , Stuart D. I. , Jackson T. , Burman A. , King D. P. , Paton D. J. . ( 2005; ). Utility of recombinant integrin alpha v beta6 as a capture reagent in immunoassays for the diagnosis of foot-and-mouth disease. . J Virol Methods 127:, 69–79. [CrossRef] [PubMed]
    [Google Scholar]
  16. Juleff N. , Windsor M. , Lefevre E. A. , Gubbins S. , Hamblin P. , Reid E. , McLaughlin K. , Beverley P. C. , Morrison I. W. , Charleston B. . ( 2009; ). Foot-and-mouth disease virus can induce a specific and rapid CD4+ T-cell-independent neutralizing and isotype class-switched antibody response in naïve cattle. . J Virol 83:, 3626–3636. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kitson J. D. , McCahon D. , Belsham G. J. . ( 1990; ). Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. . Virology 179:, 26–34. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lea S. , Hernández J. , Blakemore W. , Brocchi E. , Curry S. , Domingo E. , Fry E. , Abu-Ghazaleh R. , King A. . & other authors ( 1994; ). The structure and antigenicity of a type C foot-and-mouth disease virus. . Structure 2:, 123–139. [CrossRef] [PubMed]
    [Google Scholar]
  19. Logan D. , Abu-Ghazaleh R. , Blakemore W. , Curry S. , Jackson T. , King A. , Lea S. , Lewis R. , Newman J. . & other authors ( 1993; ). Structure of a major immunogenic site on foot-and-mouth disease virus. . Nature 362:, 566–568. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ludi A. B. , Horton D. L. , Li Y. , Mahapatra M. , King D. P. , Knowles N. J. , Russell C. A. , Paton D. J. , Wood J. L. N. . & other authors ( 2014; ). Antigenic variation of foot-and-mouth disease virus serotype A. . J Gen Virol 95:, 384–392.[PubMed] [CrossRef]
    [Google Scholar]
  21. Mahapatra M. , Aggarwal N. , Cox S. , Statham R. J. , Knowles N. J. , Barnett P. V. , Paton D. J. . ( 2008; ). Evaluation of a monoclonal antibody-based approach for the selection of foot-and-mouth disease (FMD) vaccine strains. . Vet Microbiol 126:, 40–50. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mahapatra M. , Seki C. , Upadhyaya S. , Barnett P. V. , La Torre J. , Paton D. J. . ( 2011; ). Characterisation and epitope mapping of neutralising monoclonal antibodies to A24 Cruzeiro strain of FMDV. . Vet Microbiol 149:, 242–247. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mahapatra M. , Hamblin P. , Paton D. J. . ( 2012; ). Foot-and-mouth disease virus epitope dominance in the antibody response of vaccinated animals. . J Gen Virol 93:, 488–493. [CrossRef] [PubMed]
    [Google Scholar]
  24. Maree F. F. , Blignaut B. , Esterhuysen J. J. , de Beer T. A. , Theron J. , O’Neill H. G. , Rieder E. . ( 2011; ). Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories types using virus neutralization data. . J Gen Virol 92:, 2297–2309. [CrossRef] [PubMed]
    [Google Scholar]
  25. Maree F. F. , Blignaut B. , de Beer T. A. P. , Rieder E. . ( 2013; ). Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability. . PLoS ONE 8:, e61612. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mateu M. G. , Martínez M. A. , Capucci L. , Andreu D. , Giralt E. , Sobrino F. , Brocchi E. , Domingo E. . ( 1990; ). A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. . J Gen Virol 71:, 629–637. [CrossRef] [PubMed]
    [Google Scholar]
  27. McCahon D. , Crowther J. R. , Belsham G. J. , Kitson J. D. , Duchesne M. , Have P. , Meloen R. H. , Morgan D. O. , De Simone F. . ( 1989; ). Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. . J Gen Virol 70:, 639–645. [CrossRef] [PubMed]
    [Google Scholar]
  28. Minor P. D. . ( 1986; ). Antigenic structure of poliovirus. . Microbiol Sci 3:, 141–144.[PubMed]
    [Google Scholar]
  29. Paton D. J. , Valarcher J. F. , Bergmann I. , Matlho O. G. , Zakharov V. M. , Palma E. L. , Thomson G. R. . ( 2005; ). Selection of foot and mouth disease vaccine strains—a review. . Rev Sci Tech 24:, 981–993.[PubMed]
    [Google Scholar]
  30. Pay T. W. , Hingley P. J. . ( 1987; ). Correlation of 140S antigen dose with the serum neutralizing antibody response and the level of protection induced in cattle by foot-and-mouth disease vaccines. . Vaccine 5:, 60–64. [CrossRef] [PubMed]
    [Google Scholar]
  31. Reeve R. , Blignaut B. , Esterhuysen J. J. , Opperman P. , Matthews L. , Fry E. E. , de Beer T. A. , Theron J. , Rieder E. . & other authors ( 2010; ). Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus. . PLOS Comput Biol 6:, e1001027. [CrossRef] [PubMed]
    [Google Scholar]
  32. Rweyemamu M. M. , Hingley P. J. . ( 1984; ). Food and mouth disease virus strain differentiation: analysis of the serological data. . J Biol Stand 12:, 225–229. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rweyemamu M. M. , Booth J. C. , Head M. , Pay T. W. . ( 1978; ). Microneutralization tests for serological typing and subtyping of foot-and-mouth disease virus strains. . J Hyg (Lond) 81:, 107–123. [CrossRef] [PubMed]
    [Google Scholar]
  34. Rweyemamu M. , Roeder P. , Mackay D. , Sumption K. , Brownlie J. , Leforban Y. , Valarcher J. F. , Knowles N. J. , Saraiva V. . ( 2008; ). Epidemiological patterns of foot-and-mouth disease worldwide. . Transbound Emerg Dis 55:, 57–72. [CrossRef] [PubMed]
    [Google Scholar]
  35. Samuel A. R. , Knowles N. J. , Samuel G. D. , Crowther J. R. . ( 1991; ). Evaluation of a trapping ELISA for the differentiation of foot-and-mouth disease virus strains using monoclonal antibodies. . Biologicals 19:, 299–310. [CrossRef] [PubMed]
    [Google Scholar]
  36. Seago J. , Jackson T. , Doel C. , Fry E. , Stuart D. , Harmsen M. M. , Charleston B. , Juleff N. . ( 2012; ). Characterization of epitope-tagged foot-and-mouth disease virus. . J Gen Virol 93:, 2371–2381. [CrossRef] [PubMed]
    [Google Scholar]
  37. Upadhyaya S. , Ayelet G. , Paul G. , King D. P. , Paton D. J. , Mahapatra M. . ( 2014; ). Genetic basis of antigenic variation in foot-and-mouth disease serotype A viruses from the Middle East. . Vaccine 32:, 631–638. [CrossRef] [PubMed]
    [Google Scholar]
  38. Xie Q. C. , McCahon D. , Crowther J. R. , Belsham G. J. , McCullough K. C. . ( 1987; ). Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. . J Gen Virol 68:, 1637–1647. [CrossRef] [PubMed]
    [Google Scholar]
  39. Zibert A. , Maass G. , Strebel K. , Falk M. M. , Beck E. . ( 1990; ). Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. . J Virol 64:, 2467–2473.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.060939-0
Loading
/content/journal/jgv/10.1099/vir.0.060939-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error