1887

Abstract

A novel picornavirus from commercial broiler chickens ( has been identified and genetically characterized. The viral genome consists of a single-stranded, positive-sense RNA genome of >9243 nt excluding the poly(A) tail and as such represents one of the largest picornavirus genomes reported to date. The virus genome is GC-rich with a G+C content of 54.5 %. The genomic organization is similar to other picornaviruses: 5′ UTR–L–VP0–VP3–VP1–2A–2B–2C–3A–3B–3C–3D–3′ UTR. The partially characterized 5′ UTR of >373 nt appears to possess a type II internal ribosomal entry site (IRES), which is also found in members of the genera and . This IRES exhibits significant sequence similarity to turkey ‘gallivirus A’. The 3′ UTR of 278 nt contains the conserved 48 nt ‘barbell-like’ structure identified in ‘passerivirus’, ‘gallivirus’, and some genus members. A predicted large open reading frame (ORF) of 8592 nt encodes a potential polyprotein precursor of 2864 amino acids. In addition, the virus contains a predicted large L protein of 462 amino acids. Pairwise sequence comparisons, along with phylogenetic analysis revealed the highest percentage identity to ‘Passerivirus A’ (formerly called turdivirus 1), forming a monophyletic group across the P1, P2 and P3 regions, with <40, <40 and <50 % amino acid identity respectively. Reduced identity was observed against ‘gallivirus A’ and members of the genus. Quantitative PCR analysis estimated a range of 4×10 to 5×10 viral genome copies g in 22 (73 %) of 30 PCR-positive faeces. Based on sequence and phylogenetic analysis, we propose that this virus is the first member of a potential novel genus within the family . Further studies are required to investigate the pathogenic potential of this virus within the avian host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.061085-0
2014-05-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/5/1094.html?itemId=/content/journal/jgv/10.1099/vir.0.061085-0&mimeType=html&fmt=ahah

References

  1. Blom N., Hansen J., Blaas D., Brunak S. 1996; Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216 [CrossRef][PubMed]
    [Google Scholar]
  2. Boros Á., Nemes C., Pankovics P., Kapusinszky B., Delwart E., Reuter G. 2012; Identification and complete genome characterization of a novel picornavirus in turkey (Meleagris gallopavo). J Gen Virol 93:2171–2182 [CrossRef][PubMed]
    [Google Scholar]
  3. Boros A., Nemes C., Pankovics P., Kapusinszky B., Delwart E., Reuter G. 2013; Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus . J Gen Virol 94:1496–1509 [CrossRef][PubMed]
    [Google Scholar]
  4. Farkas T., Fey B., Hargitt E. III, Parcells M., Ladman B., Murgia M., Saif Y. 2012; Molecular detection of novel picornaviruses in chickens and turkeys. Virus Genes 44:262–272 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Giachetti C., Hwang S. S., Semler B. L. 1992; Cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J Virol 66:6045–6057[PubMed]
    [Google Scholar]
  7. Gorbalenya A. E., Koonin E. V., Lai M. M. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288:201–205 [CrossRef][PubMed]
    [Google Scholar]
  8. Green J., Gallimore C. I., Norcott J. P., Lewis D., Brown D. W. 1995; Broadly reactive reverse transcriptase polymerase chain reaction for the diagnosis of SRSV-associated gastroenteritis. J Med Virol 47:392–398 [CrossRef][PubMed]
    [Google Scholar]
  9. Honkavuori K. S., Shivaprasad H. L., Briese T., Street C., Hirschberg D. L., Hutchison S. K., Lipkin W. I. 2011; Novel picornavirus in Turkey poults with hepatitis, California, USA. Emerg Infect Dis 17:480–487 [CrossRef][PubMed]
    [Google Scholar]
  10. Huang F. F., Sun Z. F., Emerson S. U., Purcell R. H., Shivaprasad H. L., Pierson F. W., Toth T. E., Meng X. J. 2004; Determination and analysis of the complete genomic sequence of avian hepatitis E virus (avian HEV) and attempts to infect rhesus monkeys with avian HEV. J Gen Virol 85:1609–1618 [CrossRef][PubMed]
    [Google Scholar]
  11. Jackwood M. W. 2012; Review of infectious bronchitis virus around the world. Avian Dis 56:634–641 [CrossRef][PubMed]
    [Google Scholar]
  12. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282[PubMed]
    [Google Scholar]
  13. Kim M. C., Kwon Y. K., Joh S. J., Lindberg A. M., Kwon J. H., Kim J. H., Kim S. J. 2006; Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage close to the genus Parechovirus in the family Picornaviridae . J Gen Virol 87:3307–3316 [CrossRef][PubMed]
    [Google Scholar]
  14. Kofstad T., Jonassen C. M. 2011; Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel Astroviruses and Picornaviruses. PLoS ONE 6:e25964 [CrossRef][PubMed]
    [Google Scholar]
  15. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.other authors 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  16. Lau S. K., Woo P. C., Lai K. K., Huang Y., Yip C. C., Shek C. T., Lee P., Lam C. S., Chan K. H., Yuen K. Y. 2011; Complete genome analysis of three novel picornaviruses from diverse bat species. J Virol 85:8819–8828 [CrossRef][PubMed]
    [Google Scholar]
  17. Mahgoub H. A., Bailey M., Kaiser P. 2012; An overview of infectious bursal disease. Arch Virol 157:2047–2057 [CrossRef][PubMed]
    [Google Scholar]
  18. Marvil P., Knowles N. J., Mockett A. P., Britton P., Brown T. D., Cavanagh D. 1999; Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus. J Gen Virol 80:653–662[PubMed]
    [Google Scholar]
  19. Moore J. E., Corcoran D., Dooley J. S., Fanning S., Lucey B., Matsuda M., McDowell D. A., Mégraud F., Millar B. C.other authors 2005; Campylobacter. Vet Res 36:351–382 [CrossRef][PubMed]
    [Google Scholar]
  20. Pankovics P., Boros A., Reuter G. 2012; Novel picornavirus in domesticated common quail (Coturnix coturnix) in Hungary. Arch Virol 157:525–530 [CrossRef][PubMed]
    [Google Scholar]
  21. Pantin-Jackwood M. J., Spackman E., Day J. M. 2007; Pathology and virus tissue distribution of Turkey origin reoviruses in experimentally infected Turkey poults. Vet Pathol 44:185–195 [CrossRef][PubMed]
    [Google Scholar]
  22. Punta M., Coggill P. C., Eberhardt R. Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G.other authors 2012; The Pfam protein families database. Nucleic Acids Res 40:D1D290–D301 [CrossRef][PubMed]
    [Google Scholar]
  23. Reuter G., Kecskémeti S., Pankovics P. 2010; Evolution of porcine kobuvirus infection, Hungary. Emerg Infect Dis 16:696–698 [CrossRef][PubMed]
    [Google Scholar]
  24. Reuter G., Pankovics P., Knowles N. J., Boros Á. 2012; Two closely related novel picornaviruses in cattle and sheep in Hungary from 2008 to 2009, proposed as members of a new genus in the family Picornaviridae . J Virol 86:13295–13302 [CrossRef][PubMed]
    [Google Scholar]
  25. Rosenquist H., Sommer H. M., Nielsen N. L., Christensen B. B. 2006; The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter . Int J Food Microbiol 108:226–232 [CrossRef][PubMed]
    [Google Scholar]
  26. Schat K. A. 2009; Chicken anemia virus. Curr Top Microbiol Immunol 331:151–183[PubMed]
    [Google Scholar]
  27. Smith A. M., Adler F. R., Ribeiro R. M., Gutenkunst R. N., McAuley J. L., McCullers J. A., Perelson A. S. 2013; Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae . PLoS Pathog 9:e1003238 [CrossRef][PubMed]
    [Google Scholar]
  28. Sweeney T. R., Dhote V., Yu Y., Hellen C. U. 2012; A distinct class of internal ribosomal entry site in members of the Kobuvirus and proposed Salivirus and Paraturdivirus genera of the Picornaviridae . J Virol 86:1468–1486 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Tseng C. H., Tsai H. J. 2007; Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus. Virus Res 129:104–114 [CrossRef][PubMed]
    [Google Scholar]
  31. Victoria J. G., Kapoor A., Li L., Blinkova O., Slikas B., Wang C., Naeem A., Zaidi S., Delwart E. 2009; Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83:4642–4651 [CrossRef][PubMed]
    [Google Scholar]
  32. Woo P. C., Lau S. K., Huang Y., Lam C. S., Poon R. W., Tsoi H. W., Lee P., Tse H., Chan A. S.other authors 2010; Comparative analysis of six genome sequences of three novel picornaviruses, turdiviruses 1, 2 and 3, in dead wild birds, and proposal of two novel genera, Orthoturdivirus and Paraturdivirus, in the family Picornaviridae . J Gen Virol 91:2433–2448 [CrossRef][PubMed]
    [Google Scholar]
  33. Woo P. C., Lau S. K., Choi G. K., Huang Y., Teng J. L., Tsoi H. W., Tse H., Yeung M. L., Chan K. H.other authors 2012; Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. J Virol 86:2797–2808 [CrossRef][PubMed]
    [Google Scholar]
  34. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.061085-0
Loading
/content/journal/jgv/10.1099/vir.0.061085-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error