1887

Abstract

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih , ,  , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.061598-0
2014-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/5/1033.html?itemId=/content/journal/jgv/10.1099/vir.0.061598-0&mimeType=html&fmt=ahah

References

  1. Bautista E., Chotpitayasunondh T., Gao Z., Harper S. A., Shaw M., Uyeki T. M., Zaki S. R., Hayden F. G., Hui D. S.. & other authors ( 2010; ). Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. . N Engl J Med 362:, 1708–1719. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bembridge G. P., Garcia-Beato R., López J. A., Melero J. A., Taylor G.. ( 1998; ). Subcellular site of expression and route of vaccination influence pulmonary eosinophilia following respiratory syncytial virus challenge in BALB/c mice sensitized to the attachment G protein. . J Immunol 161:, 2473–2480.[PubMed]
    [Google Scholar]
  3. Blasco R., Moss B.. ( 1995; ). Selection of recombinant vaccinia viruses on the basis of plaque formation. . Gene 158:, 157–162. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brownlee G. G., Fodor E.. ( 2001; ). The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. . Philos Trans R Soc Lond B Biol Sci 356:, 1871–1876. [CrossRef] [PubMed]
    [Google Scholar]
  5. Caton A. J., Brownlee G. G., Yewdell J. W., Gerhard W.. ( 1982; ). The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). . Cell 31:, 417–427. [CrossRef] [PubMed]
    [Google Scholar]
  6. Couch R. B., Kasel J. A.. ( 1983; ). Immunity to influenza in man. . Annu Rev Microbiol 37:, 529–549. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gamblin S. J., Skehel J. J.. ( 2010; ). Influenza hemagglutinin and neuraminidase membrane glycoproteins. . J Biol Chem 285:, 28403–28409. [CrossRef] [PubMed]
    [Google Scholar]
  8. García-Barreno B., Palomo C., Peñas C., Delgado T., Perez-Breña P., Melero J. A.. ( 1989; ). Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. . J Virol 63:, 925–932.[PubMed]
    [Google Scholar]
  9. Garten R. J., Davis C. T., Russell C. A., Shu B., Lindstrom S., Balish A., Sessions W. M., Xu X., Skepner E.. & other authors ( 2009; ). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. . Science 325:, 197–201. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hancock K., Veguilla V., Lu X., Zhong W., Butler E. N., Sun H., Liu F., Dong L., DeVos J. R.. & other authors ( 2009; ). Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. . N Engl J Med 361:, 1945–1952. [CrossRef] [PubMed]
    [Google Scholar]
  11. Itoh Y., Shinya K., Kiso M., Watanabe T., Sakoda Y., Hatta M., Muramoto Y., Tamura D., Sakai-Tagawa Y.. & other authors ( 2009; ). In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. . Nature 460:, 1021–1025.[PubMed]
    [Google Scholar]
  12. Knossow M., Skehel J. J.. ( 2006; ). Variation and infectivity neutralization in influenza. . Immunology 119:, 1–7. [CrossRef] [PubMed]
    [Google Scholar]
  13. Koel B. F., Burke D. F., Bestebroer T. M., van der Vliet S., Zondag G. C., Vervaet G., Skepner E., Lewis N. S., Spronken M. I.. & other authors ( 2013; ). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. . Science 342:, 976–979. [CrossRef] [PubMed]
    [Google Scholar]
  14. Koopmans M., Wilbrink B., Conyn M., Natrop G., van der Nat H., Vennema H., Meijer A., van Steenbergen J., Fouchier R.. & other authors ( 2004; ). Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. . Lancet 363:, 587–593. [CrossRef] [PubMed]
    [Google Scholar]
  15. Krause J. C., Tumpey T. M., Huffman C. J., McGraw P. A., Pearce M. B., Tsibane T., Hai R., Basler C. F., Crowe J. E. Jr. ( 2010; ). Naturally occurring human monoclonal antibodies neutralize both 1918 and 2009 pandemic influenza A (H1N1) viruses. . J Virol 84:, 3127–3130. [CrossRef] [PubMed]
    [Google Scholar]
  16. Magro M., Mas V., Chappell K., Vázquez M., Cano O., Luque D., Terrón M. C., Melero J. A., Palomo C.. ( 2012; ). Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. . Proc Natl Acad Sci U S A 109:, 3089–3094. [CrossRef] [PubMed]
    [Google Scholar]
  17. Manicassamy B., Medina R. A., Hai R., Tsibane T., Stertz S., Nistal-Villán E., Palese P., Basler C. F., García-Sastre A.. ( 2010; ). Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines. . PLoS Pathog 6:, e1000745. [CrossRef] [PubMed]
    [Google Scholar]
  18. Masoodi T. A., Shaik N. A., Shafi G., Munshi A., Ahamed A. K., Masoodi Z. A.. ( 2012; ). Comparative analysis of hemagglutinin of 2009 H1N1 influenza A pandemic indicates its evolution to 1918 H1N1 pandemic. . Gene 491:, 200–204. [CrossRef] [PubMed]
    [Google Scholar]
  19. O’Donnell C. D., Vogel L., Wright A., Das S. R., Wrammert J., Li G. M., McCausland M., Zheng N. Y., Yewdell J. W.. & other authors ( 2012; ). Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. . MBio 3:.[PubMed]
    [Google Scholar]
  20. Rodriguez A., Falcon A., Cuevas M. T., Pozo F., Guerra S., García-Barreno B., Martinez-Orellana P., Pérez-Breña P., Montoya M.. & other authors ( 2013; ). Characterization in vitro and in vivo of a pandemic H1N1 influenza virus from a fatal case. . PLoS ONE 8:, e53515. [CrossRef] [PubMed]
    [Google Scholar]
  21. Sánchez-Fauquier A., Villanueva N., Melero J. A.. ( 1987; ). Isolation of cross-reactive, subtype-specific monoclonal antibodies against influenza virus HA1 and HA2 hemagglutinin subunits. . Arch Virol 97:, 251–265. [CrossRef] [PubMed]
    [Google Scholar]
  22. Shih A. C., Hsiao T. C., Ho M. S., Li W. H.. ( 2007; ). Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. . Proc Natl Acad Sci U S A 104:, 6283–6288. [CrossRef] [PubMed]
    [Google Scholar]
  23. Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A.. ( 2004; ). Mapping the antigenic and genetic evolution of influenza virus. . Science 305:, 371–376. [CrossRef] [PubMed]
    [Google Scholar]
  24. Smith G. J., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., Ma S. K., Cheung C. L., Raghwani J.. & other authors ( 2009; ). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. . Nature 459:, 1122–1125. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tong S., Li Y., Rivailler P., Conrardy C., Castillo D. A., Chen L. M., Recuenco S., Ellison J. A., Davis C. T.. & other authors ( 2012; ). A distinct lineage of influenza A virus from bats. . Proc Natl Acad Sci U S A 109:, 4269–4274. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S.. & other authors ( 2013; ). New World bats harbor diverse influenza A viruses. . PLoS Pathog 9:, e1003657. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tumpey T. M., García-Sastre A., Taubenberger J. K., Palese P., Swayne D. E., Basler C. F.. ( 2004; ). Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. . Proc Natl Acad Sci U S A 101:, 3166–3171. [CrossRef] [PubMed]
    [Google Scholar]
  28. Uyeki T. M., Cox N. J.. ( 2013; ). Global concerns regarding novel influenza A (H7N9) virus infections. . N Engl J Med 368:, 1862–1864. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wang M. L., Skehel J. J., Wiley D. C.. ( 1986; ). Comparative analyses of the specificities of anti-influenza hemagglutinin antibodies in human sera. . J Virol 57:, 124–128.[PubMed]
    [Google Scholar]
  30. WHO ( 2011; ). Update on human cases of highly pathogenic avian influenza A(H5N1) virus infection, 2010. . Wkly Epidemiol Rec 86:, 161–166.[PubMed]
    [Google Scholar]
  31. Wiley D. C., Wilson I. A., Skehel J. J.. ( 1981; ). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. . Nature 289:, 373–378. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wright P. F., Neumann G., Kawaoka Y.. ( 2007; ). Orthomyxoviruses. . In Fields Virology, , 5th edn., pp. 1691–1740. Edited by Knipe D. M., Howley P. M... Philadelphia:: Wolters Kluwer/Lippincott Wlliams & Wilkins;.
    [Google Scholar]
  33. Xu R., Ekiert D. C., Krause J. C., Hai R., Crowe J. E. Jr, Wilson I. A.. ( 2010; ). Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. . Science 328:, 357–360. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yu X., Tsibane T., McGraw P. A., House F. S., Keefer C. J., Hicar M. D., Tumpey T. M., Pappas C., Perrone L. A.. & other authors ( 2008; ). Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. . Nature 455:, 532–536. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhang W., Qi J., Shi Y., Li Q., Gao F., Sun Y., Lu X., Lu Q., Vavricka C. J.. & other authors ( 2010; ). Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus. . Protein Cell 1:, 459–467. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.061598-0
Loading
/content/journal/jgv/10.1099/vir.0.061598-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error