- Volume 85, Issue 8, 2004
Volume 85, Issue 8, 2004
- Animal
-
- RNA viruses
-
-
Human T-cell leukaemia virus type I is highly sensitive to UV-C light
The biological characteristics of human T-cell leukaemia virus type I (HTLV-I) are not yet well understood. UV light C (UV-C) sensitivity of HTLV-I was studied using a newly established infectivity assay: infection with cell-free HTLV-I dose-dependently induced syncytial plaques in cat cells transduced with the tax1 gene of HTLV-I. HTLV-I was inactivated by a much lower UV dose than bovine leukaemia virus (BLV). The D10 (10 % survival dose) of HTLV-I was about 20 J m−2, while that of BLV was about 180 J m−2, which was similar to the reported D10 of BLV. The UV sensitivity of HTLV-I and BLV was also examined by detecting viral DNA synthesis 24 h after infection. The D10 values determined by PCR using the gag primers for HTLV-I and BLV were close to those determined by the infectivity assays. Further PCR analyses were then performed to determine D10 values using several different primers located between the 5′-long terminal repeat (5′-LTR) and the tax1 gene. The difference in UV sensitivity between HTLV-I and BLV was detected very early during replication, even during reverse transcription of the 5′-LTR of irradiated viruses, and became more prominent as reverse transcription proceeded towards the tax1 gene. Chimeric mouse retroviruses that contain the LTR-tax1 fragments of HTLV-I and BLV were made and hardly any difference in UV sensitivity was detected between them, suggesting that the difference was not determined by the linear RNA sequences of HTLV-I and BLV. HTLV-I was found to be much more sensitive than other retroviruses to UV.
-
-
-
Enhanced cellular immunity and systemic control of SHIV infection by combined parenteral and mucosal administration of a DNA prime MVA boost vaccine regimen
The immunogenicity and protective efficacy of a DNA and recombinant modified vaccinia Ankara (MVA) vaccine administered by two different routes were investigated. DNA expressing HIV-1 IIIB env, gag, RT, rev, tat and nef, and MVA expressing HIV-1 IIIB nef, tat and rev and simian immunodeficiency virus (SIV) macJ5 gag/pol and vaccinia HIV-1 env, were used as immunogens. Four cynomolgus macaques received DNA intramuscularly (i.m.) at month 0 and intrarectally (i.r.) and intra-orally (i.o.) at 2 months, followed by MVA i.m. at 4 months and i.r. and i.o. at 8 months. Another group of four monkeys received the same immunogens but only i.m.. Overall, stronger cellular immune responses measured by ELISPOT and T-cell proliferation assay were detected in the group primed i.m. and boosted mucosally. Following homologous intravenous simian-human immunodeficiency virus (SHIV) challenge, one of eight vaccinated animals was completely protected. This monkey, immunized i.m. and i.r.+i.o., exhibited the highest levels of HIV Env, Nef and Tat antibodies, high HIV Tat cytotoxic T-lymphocyte activity and T-lymphocyte proliferative responses to HIV Env. Four weeks post-challenge none of the monkeys immunized i.m. and i.r.+i.o., and only two out of four animals immunized i.m., demonstrated detectable plasma viral RNA levels. In contrast, all eight control animals had demonstrable plasma viral RNA levels 4 weeks post-challenge. Thus, stronger cellular immune responses and reduction of challenge virus burden were demonstrated in animals immunized i.m. as well as mucosally, compared with animals immunized i.m. only. The breadth and magnitude of the induced immune responses correlated with protective efficacy.
-
-
-
Characterization of germline porcine endogenous retroviruses from Large White pig
Porcine endogenous retroviruses (PERV) are of concern when the microbiological safety aspects of xenotransplantation are considered. Four unique isolates of PERV B have been identified previously from a lambda library constructed from genomic DNA from a Large White pig. This study shows that none of these isolates are replication competent when transfected into permissive human or pig cells in vitro, and the removal of flanking genomic sequences does not confer a human tropic replication competent (HTRC) phenotype on these PERV proviruses. Analysis of the envelope sequences revealed that PERV B demonstrated high similarity to the envelope sequences derived from replication-competent PERV, indicating that lack of replication competence does not appear to be attributable to this region of the provirus. These data complement recent findings that HTRC PERV are recombinants between the PERV A and PERV C subgroups, and that these recombinants are not present in the germline of miniature swine. Together, these results indicate that these individual PERV B proviruses are unlikely to give rise to HTRC PERV.
-
- DNA viruses
-
-
Negative regulation of herpes simplex virus type 1 ICP4 promoter by IE180 protein of pseudorabies virus
More LessRecombinant pseudorabies viruses (PRVs) gIS8 and N1aHTK were constructed by the insertion of a chimeric gene (α4–TK) from herpes simplex virus type 1 (HSV-1) into wild-type PRV. HSV-1 TK expression by these recombinant viruses resulted in enhanced sensitivity to ganciclovir, compared to that of the wild-type PRV, and was similar to the sensitivity shown by HSV-1. Infection with gIS8 or N1aHTK recombinant viruses led to expression of HSV-1 TK mRNA as an immediate–early (IE) gene, observed by downregulation of the HSV-1 α4 promoter. This negative regulation was due to a PRV IE protein, IE180. IE180, however, does not have all the regulatory functions of the infected-cell protein ICP4, as it does not restore the growth of ICP4-deficient HSV-1 mutants.
-
-
-
A synthetic peptide from a heptad repeat region of herpesvirus glycoprotein B inhibits virus replication
More LessGlycoprotein B (gB) is the most conserved glycoprotein of herpesviruses and plays important roles in virus infectivity. Two intervening heptad repeat (HR) sequences were found in the C-terminal half of all herpesvirus gBs analysed. A synthetic peptide derived from the HR region (aa 477–510) of bovine herpesvirus type 1 (BoHV-1) gB was studied for its ability to inhibit virus replication. The peptide interfered with cell-to-cell spread and consistently inhibited replication of BoHV-1, with a 50 % effective concentration value (EC50) of 5 μM. Inhibition of replication was obtained not only with herpesviruses including pseudorabies virus and herpes simplex virus type 1 but also partly with Newcastle disease virus. Possible mechanisms of membrane fusion inhibition by the peptide are discussed.
-
-
-
CD4+ T-cell responses to herpes simplex virus type 2 (HSV-2) glycoprotein G are type specific and differ in symptomatic and asymptomatic HSV-2-infected individuals
T-cell recognition of the secreted and membrane-bound portions of the herpes simplex virus type 2 (HSV-2) glycoprotein G (sgG-2 and mgG-2, respectively) was compared in symptomatic and asymptomatic HSV-2-infected individuals and in HSV-2-seronegative controls and the responses with HSV-1 glycoproteins C and E (gC-1 and gE-1) were compared. CD4+ T cells from HSV-2-infected individuals specifically recognized both sgG-2 and mgG-2, whereas HSV-1-infected and HSV-seronegative controls did not respond to these glycoproteins. The responses to gC-1 and gE-1, on the other hand, were not type specific, as blood mononuclear cells from both HSV-1- and HSV-2-infected individuals responded in vitro. There was an association between the status of the infection (symptomatic versus asymptomatic) and the CD4+ T-cell responsiveness. Symptomatic HSV-2-seropositive individuals responded with significantly lower Th1 cytokine production to sgG-2 and mgG-2 than did asymptomatic HSV-2-infected carriers, especially within the HSV-1-negative cohort. No differences in T-cell proliferation were observed between asymptomatic and symptomatic individuals. The results have implications for studies of HSV-2-specific CD4+ T-cell reactivity in general and for analysis of immunological differences between asymptomatic and symptomatic individuals in particular.
-
-
-
Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus Towne strain is not required for virus growth in cultured human fibroblasts
More LessSumoylation of the major immediate-early IE2 protein of human cytomegalovirus has been shown to increase transactivation activity in target reporter gene assays. This study examined the role of IE2 sumoylation in viral infection. A Towne strain-based bacterial artificial chromosome clone was generated encoding a mutated form of the IE2 protein with Lys→Arg substitutions at positions 175 and 180, the two major sumoylation sites. When human fibroblast (HF) cells were infected with the reconstituted mutant virus, (i) viral growth kinetics, (ii) the accumulation of IE1 (UL123), IE2 (UL122), p52 (UL44) and pp65 (UL83) proteins and (iii) the relocalization of the cellular small ubiquitin-like modifier (SUMO)-1, p53 and proliferating cell nuclear antigen proteins into viral DNA replication compartments were comparable with those of the wild-type and the revertant virus. The data demonstrate that sumoylation of IE2 is not essential for virus growth in cultured HF cells.
-
-
-
Functional co-operation between the Kaposi's sarcoma-associated herpesvirus ORF57 and ORF50 regulatory proteins
More LessKaposi's sarcoma (KS)-associated herpesvirus (KSHV) proteins ORF57 (also known as MTA) and ORF50 (also known as RTA) act post-transcriptionally and transcriptionally to regulate viral lytic gene expression and synergistically activate certain early and late KSHV promoters. When ORF57 and ORF50 were co-expressed, they co-operatively stimulated expression from the promoter of the immediate-early ORF50 gene itself. Co-immunoprecipitations with extracts of KSHV-infected cells showed that ORF57 and ORF50 proteins were present in the same complex. Using the pull-down assay with extracts of KSHV-infected cells, ORF50 protein was shown to interact with a glutathione S-transferase–ORF57 fusion protein. A chromatin immunoprecipitation assay showed that ORF50 promoter sequences were preferentially associated with immunoprecipitated chromatin using both anti-ORF50 and anti-ORF57 antibodies consistent with both an in vivo physical association between ORF57 and ORF50 and a potential role for ORF57 at the transcriptional level. This is the first demonstration of an interaction between these two lytic regulatory proteins in a gammaherpesvirus. Expression of ORF50 protein is sufficient to induce lytic replication in latently infected cells and may determine viral host range, spread and KS pathogenesis in vivo. A new insight into the co-ordinated activities of these two key regulatory proteins is provided in which upregulation of the ORF50 promoter with augmentation of ORF50 activity by ORF57 protein, and vice versa, would facilitate the cascade of lytic viral gene expression, thereby breaking latency. A functional and physical interaction between these two gammaherpesvirus regulatory protein counterparts could be a general feature of the herpesviruses.
-
-
-
Modified vaccinia virus Ankara induces moderate activation of human dendritic cells
More LessModified vaccinia virus Ankara (MVA) is a highly attenuated strain known to be an effective vaccine vector. Here it is demonstrated that MVA, unlike standard vaccinia virus (VACV) strains, activates monocyte-derived human dendritic cells (DCs) as testified by an increase in surface co-stimulatory molecules and the secretion of pro-inflammatory cytokines. Inhibition of virus gene expression by subjecting MVA to UV light or heat treatment did not alter its ability to activate DCs. On the other hand, standard VACV strains activated DCs if virus gene expression was prevented by prior UV light or heat treatment. These results suggest that MVA or standard VACV particles are responsible for DC activation but, in the case of standard VACV strains, virus gene expression prevents activation. Additional experiments showed that DCs were activated by MVA-infected HeLa cells and, under these conditions, could induce secretion of gamma interferon from T lymphocytes more efficiently than if a replication-competent VACV strain was employed. These data provide one explanation for the remarkable immune-stimulating capacity of MVA in the absence of virus multiplication.
-
-
-
Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal
More LessTen African swine fever virus isolates from the soft tick Ornithodoros erraticus collected on three farms in the province of Alentejo in Portugal were characterized by their ability to cause haemadsorption (HAD) of red blood cells to infected pig macrophages, using restriction enzyme site mapping of the virus genomes and by experimental infection of pigs. Six virus isolates induced haemadsorption and four were non-haemadsorbing (non-HAD) in pig macrophage cell cultures. The restriction enzyme site maps of two non-HAD viruses, when compared with a virulent HAD isolate, showed a deletion of 9·6 kbp in the fragment adjacent to the left terminal fragment and of 1·6 kbp in the right terminal fragment and an insertion of 0·2 kbp in the central region. The six HAD viruses isolated were pathogenic and produced typical acute African swine fever in pigs and the four non-HAD isolates were non-pathogenic. Pigs that were infected with non-HAD viruses were fully resistant or had a delay of up to 14 days in the onset of disease, after challenge with pathogenic Portuguese viruses. Non-HAD viruses could be transmitted by contact but with a lower efficiency (42–50 %) compared with HAD viruses (100 %). The clinical differences found between the virus isolates from the ticks could have implications for the long-term persistence of virus in the field because of the cross-protection produced by the non-pathogenic isolates. This may also explain the presence of seropositive pigs in herds in Alentejo where no clinical disease had been reported.
-
-
-
Human papillomavirus genotypes in cervical cancers in Mozambique
More LessThe distribution of human papillomavirus (HPV) types in cervical cancers is essential for design and evaluation of HPV type-specific vaccines. To follow up on a previous report that HPV types 35 and 58 were the dominant HPV types in cervical neoplasia in Mozambique, the HPV types in a consecutive case series of 74 invasive cervical cancers in Mozambique were determined. The most common worldwide major oncogenic HPV types 16 and 18 were present in 69 % of cervical cancers, suggesting that a vaccine targeting HPV-16 and -18 would have a substantial impact on cervical cancer also in Mozambique.
-
-
-
Broad-spectrum detection of papillomaviruses in bovine teat papillomas and healthy teat skin
To investigate the prevalence of bovine papillomavirus (BPV) in bovine papilloma and healthy skin, DNA extracted from teat papillomas and healthy teat skin swabs was analysed by PCR using the primer pairs FAP59/FAP64 and MY09/MY11. Papillomavirus (PV) DNA was detected in all 15 papilloma specimens using FAP59/FAP64 and in 8 of the 15 papilloma specimens using MY09/MY11. In swab samples, 21 and 8 of the 122 samples were PV DNA positive using FAP59/FAP64 and MY09/MY11, respectively. Four BPV types (BPV-1, -3, -5 and -6), two previously identified putative BPV types (BAA1 and -5) and 11 putative new PV types (designated BAPV1 to -10 and BAPV11MY) were found in the 39 PV DNA-positive samples. Amino acid sequence alignments of the putative new PV types with reported BPVs and phylogenetic analyses of the putative new PV types with human and animal PV types showed that BAPV1 to -10 and BAPV11MY are putative new BPV types. These results also showed the genomic diversity and extent of subclinical infection of BPV.
-
-
-
Attachment of bovine parvovirus to sialic acids on bovine cell membranes
More LessAlthough it has previously been shown that bovine parvovirus (BPV) attaches to the sialated glycoprotein glycophorin A on erythrocytes, the nature of virus-binding moieties on mammalian nucleated cells is less clear. Buffalo lung fibroblasts (Bu), primary bovine embryonic kidney cells, Madin–Darby bovine kidney cells and bovine embryonic trachea (EBTr) cells were assessed for molecules capable of binding BPV. Competition studies were carried out on both erythrocyte and nucleated cell targets using a variety of sialated compounds and sialic acid-negative compounds. Glycophorin A was found to inhibit BPV binding, while mucin exhibited low-level inhibition. These two sialated compounds also blocked attachment of BPV-modified microsphere carriers to the Bu cell membrane. Influenza A virus was used as a sialic acid competitor and interfered with BPV attachment to erythrocytes and replication in Bu cells. Significantly, the enzyme sialidase removed BPV-binding sites from Bu and EBTr cells. The binding sites could be reconstituted on sialidase-treated cells by the enzymes α-2,3-O-sialyltransferase and α-2,3-N-sialyltransferase. These results indicated that BPV can attach to sialic acid on cell membranes and that the sialylglycoproteins available for virus attachment appear to contain both N- and O-linked carbohydrate moieties, but that not all members of the sialic acid family can bind BPV. Moreover, there may be other moieties that can bind BPV, which may act as either primary or secondary receptors.
-
-
-
The adenovirus E1A and E1B19K genes provide a helper function for transfection-based adeno-associated virus vector production
More LessAlthough the adenoviral E1, E2A, E4 and VA RNA regions are required for efficient adeno-associated virus (AAV) vector production, the role that the individual E1 genes (E1A, E1B19K, E1B55K and protein IX) play in AAV vector production has not been clearly determined. E1 mutants were analysed for their ability to mediate AAV vector production in HeLa or KB cells, when cotransfected with plasmids encoding all other packaging functions. Disruption of E1A and E1B19K genes resulted in vector yield reduction by up to 10- and 100-fold, respectively, relative to the wild-type E1. Interruption of the E1B55K and protein IX genes had a modest effect on vector production. Interestingly, expression of anti-apoptotic E1B19K cellular homologues such as Bcl-2 or Bcl-xL fully complemented E1B19K mutants for AAV vector production. These findings may be valuable for the future development of packaging cell lines for AAV vector production.
-
-
-
Phylogenetic evidence of widespread distribution of genotype 3 JC virus in Africa and identification of a type 7 isolate in an African AIDS patient
More LessJC virus (JCV) is the cause of progressive multifocal leukoencephalophathy (PML) in immunocompromised patients. The paucity of reports from Africa has led to the hypothesis that PML is rare because of an absence of virus genotypes associated with the condition. Genotypes 3 and 6 have been identified in East and West Africa but the distribution of types across the rest of Africa is unknown. Full-length sequences of five JCV cerebrospinal fluid samples from PML patients in South Africa are reported here. Three isolates from African AIDS patients grouped with type 3A or 3B, and one with type 7, while one from a Caucasian leukaemia patient grouped with type 2D. Widespread distribution of type 3 on the continent may reflect migration patterns in antiquity, but this is the first report of type 7 in an African individual. Type 2D has only been isolated previously in South Asia, although transmission of this genotype to Europeans who later settled in South Africa is not unlikely.
-
- Plant Viruses
-
-
-
The p36 and p95 replicase proteins of Carnation Italian ringspot virus cooperate in stabilizing defective interfering RNA
More LessThe p36 and p95 proteins of Carnation Italian ringspot virus (CIRV), when expressed in Saccharomyces cerevisiae, supported the replication of defective interfering (DI) RNA. Double-label confocal immunofluorescence showed that both proteins localized to mitochondria, independently of each other. DI RNA progeny was localized by in situ hybridization both to mitochondria and to their proximity. Fractionation of cell extracts showed that replicase proteins associated with membranes with a consistent portion of DI RNA. DI RNA transcripts were stabilized more efficiently when co-expressed with both p36 and p95 than with either protein alone. By using the copper-inducible CUP1 promoter, p36 was shown to have an effect on DI RNA stability only above a threshold concentration, suggesting an ‘all-or-none’ behaviour. Conversely, the stabilizing activity of p95 was proportional to protein concentration in the range examined. Similarly, DI RNA replication level was proportional to p95 concentration and depended on a threshold concentration of p36.
-
-
-
-
Population structure and genetic variability within isolates of Grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination
More LessThe nematode-borne Grapevine fanleaf virus, from the genus Nepovirus in the family Comoviridae, causes severe degeneration of grapevines in most vineyards worldwide. We characterized 347 isolates from transgenic and conventional grapevines from two vineyard sites in the Champagne region of France for their molecular variant composition. The population structure and genetic diversity were examined in the coat protein gene by IC-RT-PCR-RFLP analysis with EcoRI and StyI, and nucleotide sequencing, respectively. RFLP data suggested that 55 % (191 of 347) of the isolates had a population structure consisting of one predominant variant. Sequencing data of 51 isolates representing the different restrictotypes confirmed the existence of mixed infection with a frequency of 33 % (17 of 51) and showed two major predominant haplotypes representing 71 % (60 of 85) of the sequence variants. Comparative nucleotide diversity among population subsets implied a lack of genetic differentiation according to host (transgenic vs conventional) or field site for most restrictotypes (17 of 18 and 13 of 18) and for haplotypes in most phylogenetic groups (seven of eight and six of eight), respectively. Interestingly, five of the 85 haplotypes sequenced had an intermediate divergence (0·036–0·066) between the lower (0·005–0·028) and upper range (0·083–0·138) of nucleotide variability, suggesting the occurrence of homologous RNA recombination. Sequence alignments clearly indicated a mosaic structure for four of these five variants, for which recombination sites were identified and parental lineages proposed. This is the first in-depth characterization of the population structure and genetic diversity in a nepovirus.
-
-
-
Mutation of Phe50 to Ser50 in the 126/183-kDa proteins of Odontoglossum ringspot virus abolishes virus replication but can be complemented and restored by exact reversion
More LessSequence comparison of a non-biologically active full-length cDNA clone of Odontoglossum ringspot virus (ORSV) pOT1 with a biologically active ORSV cDNA clone pOT2 revealed a single nucleotide change of T→C at position 211. This resulted in the change of Phe50 in OT2 to Ser50 in OT1. It was not the nucleotide but the amino acid change of Phe50 that was responsible for the inability of OT1 to replicate. Time-course experiments showed that no minus-strand RNA synthesis was detected in mutants with a Phe50 substitution. Corresponding mutants in Tobacco mosaic virus (TMV) showed identical results, suggesting that Phe50 may play an important role in replication in all tobamoviruses. Complementation of a full-length mutant OT1 was demonstrated in a co-infected local-lesion host, a systemic host and protoplasts by replication-competent mutants tORSV.GFP or tORSV.GFPm, and further confirmed by co-inoculation using tOT1.GFP+tORSV (TTC), suggesting that ORSV contains no RNA sequence inhibitory to replication in trans. Surprisingly, a small number of exact revertants were detected in plants inoculated with tOT1+tORSV.GFPm or tOT1.GFP+tORSV (TTC). No recombination was detected after screening of silent markers in virus progeny extracted from total RNA or viral RNA from inoculated and upper non-inoculated leaves as well as from transfected protoplasts. Exact reversion from TCT (OT1) to TTT (OT2), rather than recombination, restored its replication function in co-inoculated leaves of Nicotiana benthamiana.
-
-
-
Nucleo-cytoplasmic shuttling of the beet necrotic yellow vein virus RNA-3-encoded p25 protein
The protein p25 encoded by beet necrotic yellow vein virus (BNYVV) RNA-3 is involved in symptom expression of infected plants. Confocal microscopy analysis of wild-type and mutated p25 fused to GFP and transiently expressed in BY-2 tobacco suspension cells identified a nuclear localization signal (NLS) in the N-terminal part of the protein. Functionality of the NLS was confirmed by pull-down assays using rice and pepper importin-α. Furthermore, it was demonstrated that p25 contains a nuclear export sequence sensitive to leptomycin B. The nuclear export signal (NES) was characterized by mutagenesis. A GFP–p25 fusion protein expressed during a BNYVV infection of Chenopodium quinoa leaves had the same subcellular localization as observed during transient expression in BY-2 cells. The symptom phenotype induced by expression of GFP–p25 during infection was similar to that induced by wild-type virus. Studies with mutated derivatives of GFP–p25 revealed that symptom phenotype was altered when the subcellular localization of GFP–p25 was modified.
-
- Other Agents
-
-
-
Characterization of two distinct prion strains derived from bovine spongiform encephalopathy transmissions to inbred mice
Distinct prion strains can be distinguished by differences in incubation period, neuropathology and biochemical properties of disease-associated prion protein (PrPSc) in inoculated mice. Reliable comparisons of mouse prion strain properties can only be achieved after passage in genetically identical mice, as host prion protein sequence and genetic background are known to modulate prion disease phenotypes. While multiple prion strains have been identified in sheep scrapie and Creutzfeldt–Jakob disease, bovine spongiform encephalopathy (BSE) is thought to be caused by a single prion strain. Primary passage of BSE prions to different lines of inbred mice resulted in the propagation of two distinct PrPSc types, suggesting that two prion strains may have been isolated. To investigate this further, these isolates were subpassaged in a single line of inbred mice (SJL) and it was confirmed that two distinct prion strains had been identified. MRC1 was characterized by a short incubation time (110±3 days), a mono-glycosylated-dominant PrPSc type and a generalized diffuse pattern of PrP-immunoreactive deposits, while MRC2 displayed a much longer incubation time (155±1 days), a di-glycosylated-dominant PrPSc type and a distinct pattern of PrP-immunoreactive deposits and neuronal loss. These data indicate a crucial involvement of the host genome in modulating prion strain selection and propagation in mice. It is possible that multiple disease phenotypes may also be possible in BSE prion infection in humans and other animals.
-
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)