1887

Abstract

Recombinant pseudorabies viruses (PRVs) gIS8 and N1aHTK were constructed by the insertion of a chimeric gene (4–) from herpes simplex virus type 1 (HSV-1) into wild-type PRV. HSV-1 expression by these recombinant viruses resulted in enhanced sensitivity to ganciclovir, compared to that of the wild-type PRV, and was similar to the sensitivity shown by HSV-1. Infection with gIS8 or N1aHTK recombinant viruses led to expression of HSV-1 mRNA as an immediate–early (IE) gene, observed by downregulation of the HSV-1 4 promoter. This negative regulation was due to a PRV IE protein, IE180. IE180, however, does not have all the regulatory functions of the infected-cell protein ICP4, as it does not restore the growth of ICP4-deficient HSV-1 mutants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80119-0
2004-08-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852125.html?itemId=/content/journal/jgv/10.1099/vir.0.80119-0&mimeType=html&fmt=ahah

References

  1. Abad J. L., Serrano F., San Román A. L., Delgado R., Bernad A., González M. A. 2002; Single-step, multiple retroviral transduction of human T cells. J Gene Med 4:27–37 [CrossRef]
    [Google Scholar]
  2. Boldogkoi Z., Nogradi A. 2003; Gene and cancer therapy – pseudorabies virus: a novel research and therapeutic tool?. Curr Gene Ther 3:155–182 [CrossRef]
    [Google Scholar]
  3. Camacho A., Tabarés E. 1996; Characterization of the genes, including that encoding the viral proteinase, contained in Bam HI restriction fragment 9 of the pseudorabies virus genome. J Gen Virol 77:1865–1874 [CrossRef]
    [Google Scholar]
  4. Cheung A. K. 1989; DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Res 17:4637–4646 [CrossRef]
    [Google Scholar]
  5. Cistué C., Tabarés E. 1992; Expression in vivo and in vitro of the major structural protein (VP73) of African swine fever virus. Arch Virol 123:111–124 [CrossRef]
    [Google Scholar]
  6. DeLuca N. A., McCarthy A. M., Schaffer P. A. 1985; Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 56:558–570
    [Google Scholar]
  7. Disney G. H., Everett R. D. 1990; A herpes simplex virus type 1 recombinant with both copies of the Vmw175 coding sequences replaced by the homologous varicella-zoster virus open reading frame. J Gen Virol 71:2681–2689 [CrossRef]
    [Google Scholar]
  8. Domingo C., Gadea I., Pardeiro M. 8 other authors 2003; Immunological properties of a DNA plasmid encoding a chimeric protein of herpes simplex virus type 2 glycoprotein B and glycoprotein D. Vaccine 21:3565–3574 [CrossRef]
    [Google Scholar]
  9. Felser J. M., Kinchington P. R., Inchauspe G., Straus S. E., Ostrove J. M. 1988; Cell lines containing varicella-zoster virus open reading frame 62 and expressing the “IE”175 protein complement ICP4 mutants of herpes simplex virus type 1. J Virol 62:2076–2082
    [Google Scholar]
  10. Fernández A., Menéndez del Campo A. M., Fernández S., Camacho A., Castro J. M., Tabarés E. 1999; Conversion of US3-encoded protein kinase gene from pseudorabies virus in a diploid gene located within inverted repeats by genetic recombination between the viral genome isomers. Virus Res 61:125–135 [CrossRef]
    [Google Scholar]
  11. Godeau F., Saucier C., Kourilsky P. 1992; Replication inhibition by nucleoside analogues of a recombinant Autographa californica multicapsid nuclear polyhedrosis virus harboring the herpes thymidine kinase gene driven by the IE-1(0) promoter: a new way to select recombinant baculoviruses. Nucleic Acids Res 20:6239–6246 [CrossRef]
    [Google Scholar]
  12. Ihara S., Feldman L., Watanabe S., Ben-Porat T. 1983; Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454 [CrossRef]
    [Google Scholar]
  13. Kit S. 1985; Thymidine kinase. Microbiol Sci 2:369–375
    [Google Scholar]
  14. Klupp G. B., Hengartner C. J., Mettenleiter T. C., Enquist L. W. 2004; Complete, annotated sequence of the pseudorabies virus genome. J Virol 78:424–440 [CrossRef]
    [Google Scholar]
  15. Koslowski K. M., Shaver P. R., Wang X.-Y., Tenney D. J., Pederson N. E. 1997; The pseudorabies virus UL28 protein enters the nucleus after coexpression with the herpes simplex virus UL15 protein. J Virol 71:9118–9123
    [Google Scholar]
  16. Leopardi R., Michael N., Roizman B. 1995; Repression of the herpes simplex virus 1 α 4 gene by its gene product (ICP4) within the context of the viral genome is conditioned by the distance and stereoaxial alignment of the ICP4 DNA binding site relative to the TATA box. J Virol 69:3042–3048
    [Google Scholar]
  17. McKnight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res 8:5949–5964 [CrossRef]
    [Google Scholar]
  18. Mettenleiter T. C., Spear P. G. 1994; Glycoprotein gB (gII) of pseudorabies virus can functionally substitute for glycoprotein gB in herpes simplex virus type 1. J Virol 68:500–504
    [Google Scholar]
  19. Michael N., Roizman B. 1993; Repression of the herpes simplex virus 1 α 4 gene by its gene product occurs within the context of the viral genome and is associated with all three identified cognate sites. Proc Natl Acad Sci U S A 90:2286–2290 [CrossRef]
    [Google Scholar]
  20. Piechaczyk M., Blanchard J. M., Marty L., Dani C., Panabieres P., El Sabouty S., Fort P., Jeanteur P. 1984; Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acid Res 12:6951–6963 [CrossRef]
    [Google Scholar]
  21. Poffenberger K. L., Tabarés E., Roizman B. 1983; Characterization of a viable, noninverting herpes simplex virus 1 genome derived by insertion and deletion of sequences at the junction of components L and S. Proc Natl Acad Sci U S A 80:2690–2694 [CrossRef]
    [Google Scholar]
  22. Post L. E., Mackem S., Roizman B. 1981; Regulation of α genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with α gene promoters. Cell 24:555–565 [CrossRef]
    [Google Scholar]
  23. Prieto J., Martín Hernández A. M., Tabarés E. 1991; Loss of pseudorabies virus thymidine kinase activity due a to single base mutation and amino acid substitution. J Gen Virol 72:1435–1439 [CrossRef]
    [Google Scholar]
  24. Roizman B., Jenkins F. J. 1985; Genetic engineering of novel genomes of large DNA viruses. Science 229:1208–1214 [CrossRef]
    [Google Scholar]
  25. Roizman B., Knipe D. M. 2001; Herpes simplex viruses and their replication. In Fields Virology , 4th edn. pp  2399–2459 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  26. Stanziale S. F., Fong Y. 2003; Novel approaches to cancer therapy using oncolytic viruses. Curr Mol Med 3:61–71 [CrossRef]
    [Google Scholar]
  27. Tabarés E. 1987; Detection of DNA viruses by radioactive and non radioactive DNA probes: application to African swine fever virus. Arch Virol 92:233–242 [CrossRef]
    [Google Scholar]
  28. Tabarés E., Marcotegui M. A., Fernández M., Sánchez-Botija C. 1980; Proteins specified by African swine fever virus. I. Analysis of viral structural proteins and antigenic properties. Arch Virol 66:107–117 [CrossRef]
    [Google Scholar]
  29. Taharaguchi S., Inoue H., Ono E., Kida H., Yamada S., Shimizu Y. 1994; Mapping of transcriptional regulatory domains of pseudorabies virus immediate-early protein. Arch Virol 137:289–302 [CrossRef]
    [Google Scholar]
  30. van Oirschot G. D., Gielkens A. L. J., Moormann R. J. M., Berns A. J. M. 1990; Marker vaccines, virus protein-specific antibody assays and the control of Aujeszky's disease. Vet Microbiol 23:85–101 [CrossRef]
    [Google Scholar]
  31. Vlcek C., Paces V., Schwyzer M. 1989; Nucleotide sequence of the pseudorabies virus immediate early gene, encoding a strong transactivator protein. Virus Genes 2:335–346 [CrossRef]
    [Google Scholar]
  32. Weir J. P. 2001; Regulation of herpes simplex virus gene expression. Gene 271:117–130 [CrossRef]
    [Google Scholar]
  33. Wu C.-L., Wilcox K. W. 1991; The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters. J Virol 65:1149–1159
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80119-0
Loading
/content/journal/jgv/10.1099/vir.0.80119-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error