- Volume 82, Issue 12, 2001
Volume 82, Issue 12, 2001
- Animal: DNA Viruses
-
-
-
Circulating tumour necrosis factor-α and interferon-γ are detectable during acute and convalescent parvovirus B19 infection and are associated with prolonged and chronic fatigue
To investigate whether cytokine responses may have a bearing on the symptoms and outcome of parvovirus B19 infection, circulating cytokines were measured during acute infection (n=51), follow-up of acute infection (n=39) and in normal healthy controls (n=50). At acute B19 virus infection (serum anti-B19 IgM-positive), patients ranged in age from 4 to 54 years, with a mean age of 28·2 years. The male:female ratio was 1:4·1 and symptoms were rash (n=15), arthralgia (n=31), fatigue (n=8), lymphadenopathy (n=4), foetal hydrops (n=3), transient aplastic crisis (n=2), neutropenia (n=2), myelodysplasia (n=1), thrombocytopenia (n=1) and pancytopenia (n=1). Of these patients, 39 were contacted after a follow-up period of 2–37 months (mean of 22·5 months). In comparison with normal controls, detectable IL-6 was associated with acute B19 virus infection (26%; P=0·0003), but not with follow-up (6%; P=0·16). Detection of interferon (IFN)-γ was associated with acute B19 virus infection (67%; P<0·0001) and follow-up (67%; P<0·0001). Detection of tumour necrosis factor (TNF)-α was associated with acute B19 virus infection (49%; P<0·0001) and follow-up (56%; P<0·0001). IL-1β was detected in acute infection (20%), but not at follow-up. At acute B19 virus infection, detection of serum/plasma IL-6 was associated with rheumatoid factor (P=0·038) and IFN-γ (⩾7 pg/ml) was associated with fatigue in those patients of ⩾15 years of age (P=0·022). At follow-up, fatigue was associated with IFN-γ (⩾7 pg/ml) and/or TNF-α (⩾40 pg/ml) (P=0·0275). Prolonged upregulation of serum IFN-γ and TNF-α appears to represent a consistent host response to symptomatic B19 virus infection.
-
-
-
-
Evidence for evolution of canine parvovirus type 2 in Italy
Two isolates of canine parvovirus (CPV) were obtained from dogs affected with severe haemorrhagic diarrhoea. Type 2b antigenic specificity was predicted by both antigenic analysis with monoclonal antibodies and PCR characterization with type-specific primers. Nevertheless, sequence analysis of the capsid protein-encoding gene revealed two amino acid changes. One of the changes affected position 426 (Asp to Glu), in a major antigenic site of the viral capsid, determining the replacement of a residue unique to CPV type 2b. The failure of established typing methods to distinguish this antigenic variant was overcome by the development of an RFLP assay.
-
-
-
MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-κB activation and apoptosis induced by PKR
More LessMolluscum contagiosum virus (MCV) is a human poxvirus that causes abnormal proliferation of epithelial cells. MCV encodes specific molecules to control host defences, such as MC159L, which as previously shown prevents apoptosis induced by death receptors. However, unlike most poxviruses, MCV lacks a homologue to the E3L and K3L proteins of vaccinia virus, which are involved in the control of the key antiviral and pro-apoptotic dsRNA-dependent protein kinase, PKR. In this study, we analysed the relationship of MC159L to PKR. We found that MC159L is not a direct inhibitor of PKR since it does not associate with PKR and cannot block PKR-induced phosphorylation of eIF-2α. However, expression of MC159L inhibits apoptosis triggered by PKR through death receptor-mediated pathways. In addition, MC159L inhibits NF-κB activation induced in response to PKR. Expression of MC159L cannot counteract the PKR-mediated antiviral action in the context of a poxvirus infection, despite its ability to affect these signalling events. These findings show that MC159L is able to interfere with downstream events triggered by PKR in the absence of a direct physical interaction, and assign a role to MC159L in the control of some PKR-mediated biological effects.
-
-
-
Priming by DNA immunization augments T-cell responses induced by modified live bovine herpesvirus vaccine
DNA vaccines have several advantages over conventional vaccines. One of the most important characteristics is the presentation of antigen via both MHC class I and class II receptors. Although this generally results in strong T-cell responses, antibody production and protection achieved by DNA immunization are unfortunately not always adequate. In contrast, modified live virus (MLV) vaccines usually induce adequate antibody and moderate cellular responses, whereas killed vaccines tend to elicit weak immune responses in general. A DNA prime–MLV boost regimen should result in enhanced cellular immunity and possibly improved antibody production. To test this hypothesis, plasmids encoding bovine herpesvirus-1 (BHV-1) glycoproteins B and D were delivered by gene gun to the genital mucosa of cattle prior to immunization with modified live BHV-1 vaccine. The immune responses induced were compared to those of an MLV-vaccinated group and a negative control group. Although significantly enhanced T-cell responses were induced by priming with the DNA vaccine, there was no increase in antibody titres. Similar levels of protection were induced by the MLV vaccine alone and the DNA prime and MLV boost regimen, which suggests that there is no correlation between the induction of T-cell responses and protection from BHV-1 challenge.
-
-
-
Genetic polymorphism of human herpesvirus-7 among human populations
The analysis of three human herpesvirus-7 (HHV-7) genes encoding phosphoprotein p100, glycoprotein B and major capsid protein respectively had previously shown the existence of distinct gene alleles, leading to the concept of HHV-7 variants. We have analysed the distribution of HHV-7 variants among 297 distinct subjects who belonged to different human populations from Africa, Asia, Europe and America. Two variants, designated Co1 and Co2, were found in 52% and 20% of studied subjects. Ten other variants, designated Co3–Co12, were less frequent and classified into two groups related to Co1 and Co2 respectively. While the former group was ubiquitous and the most frequent in Africa and Asia, the latter one was predominantly found in European and Mongol populations. Despite the high stability of the HHV-7 genome, a few nucleotide substitutions at precise positions define distinct variants which, to some extent, behave as markers of human populations.
-
-
-
Elevated expression of c-myc in lymphoblastoid cells does not support an Epstein–Barr virus latency III-to-I switch
Epstein–Barr virus (EBV) transforms primary B cells in vitro. Established cell lines adopt a lymphoblastoid phenotype (LCL). In contrast, EBV-positive Burkitt’s lymphoma (BL) cells, in which the proto-oncogene c-myc is constitutively activated, do not express a lymphoblastoid phenotype in vivo. The two different phenotypes are paralleled by two distinct programmes of EBV latent gene expression termed latency type I in BL cells and type III in LCL. Human B cell lines were established from a conditional LCL (EREB2-5) by overexpression of c-myc and inactivation of EBV nuclear protein 2 (EBNA2). These cells (A1 and P493-6) adopted a BL phenotype in the absence of EBNA2. However, the EBV latency I promoter Qp was not activated. Instead, the latency III promoter Cp remained active. These data suggest that the induction of a BL phenotype by overexpression of c-myc in an LCL is not necessarily paralleled by an EBV latency III-to-I switch.
-
-
-
Regulation of p27KIP1 in Epstein–Barr virus-immortalized lymphoblastoid cell lines involves non-apoptotic caspase cleavage
More LessThe cyclin-dependent kinase inhibitor p27KIP1 plays a key role in controlling cell proliferation. Here we show that p27KIP1 is commonly down-regulated in B-cells immortalized by Epstein–Barr virus (EBV) (lymphoblastoid cell lines, LCLs). The significance of this event for the immortal phenotype of LCLs is implied by a requirement for active cdk2-containing complexes for continued proliferation, and by the ability of the residual p27KIP1 to associate with cdk2. The mechanism of p27KIP1 attenuation is post-translational, but inhibitor studies reveal that the mechanism does not rely heavily on the proteasome. Instead we find that LCLs contain an activity that cleaves a caspase recognition site present in p27KIP1 (DPSD139). The activity is not associated with apoptosis and closely resembles a proliferation-associated caspase activity we previously described in the EBV-negative B-lymphoma-derived cell line BJAB. Importantly, proliferating LCLs contain a p27KIP1 product that is consistent with cleavage at this site. Inhibition of caspase(s) in vivo modulates p27KIP1 expression and strongly inhibits proliferation of IB4 cells. This inhibitor profile is identical to that displayed by the DPSD-directed caspase present in BJAB cells, suggesting that the caspase may fulfil a general role in controlling p27KIP1 expression in immortal lymphoid cell lines. Thus, apoptosis-independent cleavage appears to contribute to the maintenance of the low basal levels of p27KIP1 in B-cells immortalized by EBV.
-
-
-
Genetic analysis of the Epstein–Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function
More LessCo-operation between the Epstein–Barr virus (EBV)-coded leader protein EBNA-LP and the nuclear antigen EBNA2 appears to be critical for efficient virus-induced B cell transformation. Here we report the genetic analysis of EBNA-LP function using two transient co-transfection assays of co-operativity, activation of latent membrane protein 1 (LMP1) expression from a resident EBV genome in Akata-BL cells and activation of an EBNA2-responsive reporter construct. Small deletions were introduced into each of five conserved regions (CRs) of EBNA-LP sequence present in type 1 and type 2 EBV strains and in several primate lymphocryptovirus EBNA-LP homologues. Deletions within all three CRs in the EBNA-LP W1W2 repeat domain completely abrogated function, through inhibition of nuclear localization in the cases of CR1 and CR2 but not of CR3; deletions within CR4 and CR5 in the Y1Y2 unique domain had relatively little effect, yet loss of the whole Y2 sequence blocked activity. Alanine substitution of serine residues within potential phosphorylation sites identified two mutants of particular interest. Substitution of three such residues (S34,36,63) within W1W2 not only abrogated EBNA-LP activity but was associated with a complete loss of EBNA2 detectability in co-transfected cells, implying possible destabilization of the co-expressed EBNA2 protein. More importantly the individual substitution of S36 completely blocked EBNA-LP/EBNA2 co-operativity while retaining EBNA2 expression. We infer critical roles for the CR3 domain and for the S36 residue in EBNA-LP’s co-operative function.
-
- Plant
-
-
-
Forced recombination between distinct strains of Maize streak virus
More LessRecombination between divergent virus genomes is believed to be a major mechanism for generation of novel virus genotypes. We have examined the recombination process in geminiviruses by forcing recombination between two distinct isolates of Maize streak virus (MSV), MSV-Kom and MSV-Set. Heterodimeric agroinfectious constructs containing tandemly cloned mixtures of complete or partial MSV-Set and MSV-Kom genomes were used to simulate a circular dimeric form similar to that which would be expected to occur following a single intermolecular crossing-over event between MSV-Set and MSV-Kom replicative form DNAs at the long intergenic region (LIR)–movement protein gene (MP) interface. We isolated, analysed and biologically characterized many of the recombinant MSV genomes that were generated from the constructs in planta. Apart from having the same simulated breakpoint at the LIR–MP interface, all the genomes examined had a second breakpoint that had been generated through either intramolecular homologous recombination or a replicational release mechanism. The pathogenicities of six predominantly MSV-Kom-like recombinants were tested in maize. While all were capable of producing a symptomatic infection in this host, none was more virulent than MSV-Kom and only two were more virulent than MSV-Set. The two most virulent recombinants were leafhopper transmitted to a range of differentially MSV-resistant maize, wheat and barley genotypes and both were found to have unique biological properties.
-
-
-
-
Genome organization of Tobacco leaf curl Zimbabwe virus, a new, distinct monopartite begomovirus associated with subgenomic defective DNA molecules
More LessThe complete DNA A of the begomovirus Tobacco leaf curl Zimbabwe virus (TbLCZWV) was sequenced: it comprises 2767 nucleotides with six major open reading frames encoding proteins with molecular masses greater than 9 kDa. Full-length TbLCZWV DNA A tandem dimers, cloned in binary vectors (pBin19 and pBI121) and transformed into Agrobacterium tumefaciens, were systemically infectious upon agroinoculation of tobacco and tomato. Efforts to identify a DNA B component were unsuccessful. These findings suggest that TbLCZWV is a new member of the monopartite group of begomoviruses. Phylogenetic analysis identified TbLCZWV as a distinct begomovirus with its closest relative being Chayote mosaic virus. Abutting primer PCR amplified ca. 1300 bp molecules, and cloning and sequencing of two of these molecules revealed them to be subgenomic defective DNA molecules originating from TbLCZWV DNA A. Variable symptom severity associated with tobacco leaf curl disease and TbLCZWV is discussed.
-
-
-
Evidence for RNA-mediated defence effects on the accumulation of Potato leafroll virus
More LessIn plants infected with Potato leafroll virus (PLRV), or other luteoviruses, infection is very largely confined to cells in the vascular system. Even in tobacco plants transformed with PLRV full-length cDNA, in which all mesophyll cells should synthesize infectious PLRV RNA transcripts, only a minority of the mesophyll cells accumulate detectable amounts of virus. We have explored this phenomenon further by transforming a better PLRV host, Nicotiana benthamiana, with the same transgene, by superinfecting transformed plants with Potato virus Y and by producing tobacco plants in which cells contained both PLRV cDNA and DNA encoding the P1/HC-Pro genes of the potyvirus Tobacco etch virus. A greater proportion of cells in superinfected plants or in doubly transgenic plants accumulated PLRV than did in singly transgenic tobacco plants. However, most cells in these plants did not accumulate virus. To investigate restriction of the multiplication of viruses containing PLRV sequences, transgenic plants were infected with a chimeric virus that consisted of Tobacco mosaic virus (TMV) containing genes for either the coat protein (CP) of PLRV or jellyfish green fluorescent protein (GFP) in place of the TMV coat protein. The virus that encoded PLRV CP spread more slowly and accumulated less extensively than did the virus that expressed GFP. The results support the suggestion that an RNA-mediated form of resistance that resembles post-transcriptional gene silencing operates in non-vascular cells and may be part of the mechanism that restricts PLRV to vascular tissue in conventionally infected plants.
-
-
-
Effects of inactivation of the coat protein and movement genes of Tomato bushy stunt virus on early accumulation of genomic and subgenomic RNAs
More LessAccumulation of RNA of Tomato bushy stunt virus (TBSV) was examined within the first few hours after infection of Nicotiana benthamiana protoplasts to determine the influence of the coat protein (CP), the movement-associated proteins P22 and P19 and RNA sequences at very early stages of replication. The results showed that P19 had no effect on early RNA replication, whereas the absence of CP and/or P22 expression delayed RNA accumulation only marginally. Removal of CP-coding sequences had no added negative effects, but when the deletion extended into the downstream p22 gene, it not only eliminated synthesis of subgenomic RNA2 but also delayed accumulation of genomic RNA by 10 h. At times beyond 20 h post-transfection, RNA accumulated to normal high levels for all mutants. This illustrates that TBSV RNA sequences that have negligible impact on overall RNA levels observed late in infection can actually have pronounced effects at very early stages.
-
-
-
Determination of the substrate specificity of turnip mosaic virus NIa protease using a genetic method
More LessThe RNA genome of turnip mosaic potyvirus (TuMV) encodes a large polyprotein that is processed to mature proteins by virus-encoded proteases. The TuMV NIa protease is responsible for the cleavage of the polyprotein at seven different locations. These cleavage sites are defined by a conserved sequence motif Val-Xaa-His-Gln↓, with the scissile bond located after Gln. To determine the substrate specificity of the NIa protease, amino acid sequences cleaved by the NIa protease were obtained from randomized sequence libraries using a screening method referred to as GASP (genetic assay for site-specific proteolysis). Based on statistical analysis of the obtained sequences, a consensus substrate sequence was deduced: Yaa-Val-Arg-His-Gln↓Ser, with Yaa being an aliphatic amino acid and the scissile bond being located between Gln and Ser. This result is consistent with the conserved cleavage sequence motif, and should provide insight into the molecular activity of the NIa protease.
-
- Corrigendum
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)