1887

Abstract

Epstein–Barr virus (EBV) transforms primary B cells . Established cell lines adopt a lymphoblastoid phenotype (LCL). In contrast, EBV-positive Burkitt’s lymphoma (BL) cells, in which the proto-oncogene c- is constitutively activated, do not express a lymphoblastoid phenotype . The two different phenotypes are paralleled by two distinct programmes of EBV latent gene expression termed latency type I in BL cells and type III in LCL. Human B cell lines were established from a conditional LCL (EREB2-5) by overexpression of and inactivation of EBV nuclear protein 2 (EBNA2). These cells (A1 and P493-6) adopted a BL phenotype in the absence of EBNA2. However, the EBV latency I promoter Qp was not activated. Instead, the latency III promoter Cp remained active. These data suggest that the induction of a BL phenotype by overexpression of c- in an LCL is not necessarily paralleled by an EBV latency III-to-I switch.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-12-3051
2001-12-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/12/0823051a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-12-3051&mimeType=html&fmt=ahah

References

  1. Chen H., Lee J. M., Wang Y., Huang D. P., Ambinder R. F., Hayward S. D. 1999; The Epstein–Barr virus latency Bam HI-Q promoter is positively regulated by STATs and Zta interference with JAK/STAT activation leads to loss of Bam HI-Q promoter activity. Proceedings of the National Academy of Sciences, USA 96:9339–9344
    [Google Scholar]
  2. Cludts I., Farrell P. J. 1998; Multiple functions within the Epstein–Barr virus EBNA-3A protein. Journal of Virology 72:1862–1869
    [Google Scholar]
  3. Cutrona G., Ulivi M., Fais F., Roncella S., Ferrarini M. 1995; Transfection of the c-myc oncogene into normal Epstein–Barr virus-harboring B cells results in new phenotypic and functional features resembling those of Burkitt lymphoma cells and normal centroblasts. Journal of Experimental Medicine 181:699–711
    [Google Scholar]
  4. Davenport M. G., Pagano J. S. 1999; Expression of EBNA-1 mRNA is regulated by cell cycle during Epstein–Barr virus type I latency. Journal of Virology 73:3154–3161
    [Google Scholar]
  5. Delecluse H. J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. 1998; Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proceedings of the National Academy of Sciences, USA 95:8245–8250
    [Google Scholar]
  6. Delecluse H. J., Pich D., Hilsendegen T., Baum C., Hammerschmidt W. 1999; A first-generation packaging cell line for Epstein–Barr virus-derived vectors. Proceedings of the National Academy of Sciences, USA 96:5188–5193
    [Google Scholar]
  7. Evans T. J., Farrell P. J., Swaminathan S. 1996; Molecular genetic analysis of Epstein–Barr virus Cp promoter function. Journal of Virology 70:1695–1705
    [Google Scholar]
  8. Henriksson M., Lüscher B. 1996; Proteins of the Myc network: essential regulators of cell growth and differentiation. Advances in Cancer Research 68:109–182
    [Google Scholar]
  9. Hotchin N. A., Allday M. J., Crawford D. H. 1990; Deregulated c-myc expression in Epstein–Barr-virus-immortalized B-cells induces altered growth properties and surface phenotype but not tumorigenicity. International Journal of Cancer 45:566–571
    [Google Scholar]
  10. Kempkes B., Spitkovsky D., Jansen-Durr P., Ellwart J. W., Kremmer E., Delecluse H. J., Rottenberger C., Bornkamm G. W., Hammerschmidt W. 1995; B-cell proliferation and induction of early G1-regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO Journal 14:88–96
    [Google Scholar]
  11. Kempkes B., Zimber-Strobl U., Eissner G., Pawlita M., Falk M., Hammerschmidt W., Bornkamm G. W. 1996; Epstein–Barr virus nuclear antigen 2 (EBNA2)–oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein–Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. Journal of General Virology 77:227–237
    [Google Scholar]
  12. Kerr B. M., Lear A. L., Rowe M., Croom-Carter D., Young L. S., Rookes S. M., Gallimore P. H., Rickinson A. B. 1992; Three transcriptionally distinct forms of Epstein–Barr virus latency in somatic cell hybrids: cell phenotype dependence of virus promoter usage. Virology 187:189–201
    [Google Scholar]
  13. Kieff E. 1996; Epstein–Barr virus and its replication. In Fields Virology pp 2343–2396 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  14. Lombardi L., Newcomb E. W., Dalla-Favera R. 1987; Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell 49:161–170
    [Google Scholar]
  15. Marshall D., Sample C. 1995; Epstein–Barr virus nuclear antigen 3C is a transcriptional regulator. Journal of Virology 69:3624–3630
    [Google Scholar]
  16. Nesbit C. E., Tersak J. M., Prochownik E. V. 1999; MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016
    [Google Scholar]
  17. Nonkwelo C., Ruf I. K., Sample J. 1997; Interferon-independent and -induced regulation of Epstein–Barr virus EBNA-1 gene transcription in Burkitt lymphoma. Journal of Virology 71:6887–6897
    [Google Scholar]
  18. Pajic A., Spitkovsky D., Christoph B., Kempkes B., Schuhmacher M., Staege M. S., Brielmeier M., Ellwart J., Kohlhuber F., Bornkamm G. W., Polack A., Eick D. 2000; Cell cycle activation by c-myc in a burkitt lymphoma model cell line. International Journal of Cancer 87:787–793
    [Google Scholar]
  19. Polack A., Hortnagel K., Pajic A., Christoph B., Baier B., Falk M., Mautner J., Geltinger C., Bornkamm G. W., Kempkes B. 1996; c-myc activation renders proliferation of Epstein–Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proceedings of the National Academy of Sciences, USA 93:10411–10416
    [Google Scholar]
  20. Rickinson A. B., Kieff E. 1996; Epstein–Barr virus. In Fields Virology pp 2397–2446 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  21. Robertson K. D. 2000; The role of DNA methylation in modulating Epstein–Barr virus gene expression. Current Topics in Microbiology and Immunology 249:21–34
    [Google Scholar]
  22. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987; Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6:2743–2751
    [Google Scholar]
  23. Ruf I. K., Sample J. 1999; Repression of Epstein–Barr virus EBNA-1 gene transcription by pRb during restricted latency. Journal of Virology 73:7943–7951
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  25. Sample J., Henson E. B., Sample C. 1992; The Epstein–Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. Journal of Virology 66:4654–4661
    [Google Scholar]
  26. Schaefer B. C., Strominger J. L., Speck S. H. 1995; Redefining the Epstein–Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proceedings of the National Academy of Sciences, USA 92:10565–10569
    [Google Scholar]
  27. Schaefer B. C., Strominger J. L., Speck S. H. 1996; A simple reverse transcriptase PCR assay to distinguish EBNA1 gene transcripts associated with type I and II latency from those arising during induction of the viral lytic cycle. Journal of Virology 70:8204–8208
    [Google Scholar]
  28. Schaefer B. C., Strominger J. L., Speck S. H. 1997a; Host-cell-determined methylation of specific Epstein–Barr virus promoters regulates the choice between distinct viral latency programs. Molecular and Cellular Biology 17:364–377
    [Google Scholar]
  29. Schaefer B. C., Paulson E., Strominger J. L., Speck S. H. 1997b; Constitutive activation of Epstein–Barr virus (EBV) nuclear antigen 1 gene transcription by IRF1 and IRF2 during restricted EBV latency. Molecular and Cellular Biology 17:873–886
    [Google Scholar]
  30. Schlager S., Speck S. H., Woisetschlager M. 1996; Transcription of the Epstein–Barr virus nuclear antigen 1 (EBNA1) gene occurs before induction of the BCR2 (Cp) EBNA gene promoter during the initial stages of infection in B cells. Journal of Virology 70:3561–3570
    [Google Scholar]
  31. Wolf J., Pawlita M., Klevenz B., Frech B., Freese U. K., Muller-Lantzsch N., Diehl V., zur Hausen H. 1993; Down-regulation of integrated Epstein–Barr virus nuclear antigen 1 and 2 genes in a Burkitt lymphoma cell line after somatic cell fusion with autologous EBV-immortalized lymphoblastoid cells. International Journal of Cancer 53:621–627
    [Google Scholar]
  32. Zhang L., Pagano J. S. 1997; IRF-7, a new interferon regulatory factor associated with Epstein–Barr virus latency. Molecular and Cellular Biology 17:5748–5757
    [Google Scholar]
  33. Zhang L., Pagano J. S. 1999; Interferon regulatory factor 2 represses the Epstein–Barr virus Bam HI Q latency promoter in type III latency. Molecular and Cellular Biology 19:3216–3223
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-82-12-3051
Loading
/content/journal/jgv/10.1099/0022-1317-82-12-3051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error