1887

Abstract

The analysis of three human herpesvirus-7 (HHV-7) genes encoding phosphoprotein p100, glycoprotein B and major capsid protein respectively had previously shown the existence of distinct gene alleles, leading to the concept of HHV-7 variants. We have analysed the distribution of HHV-7 variants among 297 distinct subjects who belonged to different human populations from Africa, Asia, Europe and America. Two variants, designated Co1 and Co2, were found in 52% and 20% of studied subjects. Ten other variants, designated Co3–Co12, were less frequent and classified into two groups related to Co1 and Co2 respectively. While the former group was ubiquitous and the most frequent in Africa and Asia, the latter one was predominantly found in European and Mongol populations. Despite the high stability of the HHV-7 genome, a few nucleotide substitutions at precise positions define distinct variants which, to some extent, behave as markers of human populations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-12-3045
2001-12-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/12/0823045a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-12-3045&mimeType=html&fmt=ahah

References

  1. Agostini H. T., Yanagihara R., Davis V., Ryschkewitsch C. F., Stoner G. L. 1997; Asian genotypes of JC virus in Native Americans and in a Pacific Island population: markers of viral evolution and human migration. Proceedings of the National Academy of Sciences, USA 94:14542–14546
    [Google Scholar]
  2. Bandelt H. J., Forster P., Rohl A. 1999; Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16:37–48
    [Google Scholar]
  3. Berneman Z. N., Ablashi D. V., Li G., Eger-Fletcher M., Reitz M. S., Hung C. L., Brus I., Komaroff A. L., Gallo R. C. 1992; Human herpesvirus 7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus 6 and human cytomegalovirus. Proceedings of the National Academy of Sciences, USA 89:10552–10556
    [Google Scholar]
  4. Biglione M., Vidan O., Mahieux R., de Colombo M., de los Angeles de Basualdo M., Bonnet M., Pankow G., De Efron M. A., Zorrilla A., Tekaia F., Murphy E., de The G., Gessain A. 1999; Seroepidemiological and molecular studies of human T cell lymphotropic virus type II, subtype b, in isolated groups of Mataco and Toba Indians of northern Argentina. AIDS Research and Human Retroviruses 15:407–417
    [Google Scholar]
  5. Black J. B., Pellett P. E. 1999; Human herpesvirus 7. Reviews in Medical Virology 9:245–262
    [Google Scholar]
  6. Dominguez G., Dambaugh T. R., Stamey F. R., Dewhurst S., Inoue N., Pellett P. E. 1999; Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. Journal of Virology 73:8040–8052
    [Google Scholar]
  7. Excoffier L., Smouse P. E., Quattro J. M. 1992; Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491
    [Google Scholar]
  8. Franti M., Aubin J. T., Poirel L., Gautheret-Dejean A., Candotti D., Huraux J. M., Agut H. 1998; Definition and distribution analysis of glycoprotein B gene alleles of human herpesvirus 7. Journal of Virology 72:8725–8730
    [Google Scholar]
  9. Franti M., Aubin J. T., Gautheret-Dejean A., Malet I., Cahour A., Huraux J. M., Agut H. 1999; Preferential associations of alleles of three distinct genes argue for the existence of two prototype variants of human herpesvirus 7. Journal of Virology 73:9655–9658
    [Google Scholar]
  10. Frenkel N., Schirmer E. C., Wyatt L. S., Katsafanas G., Roffman E., Danovich R. M., June C. H. 1990; Isolation of a new herpesvirus from human CD4+ T cells. Proceedings of the National Academy of Sciences, USA 87:748–752
    [Google Scholar]
  11. Gautheret-Dejean A., Aubin J. T., Poirel L., Huraux J. M., Nicolas J. C., Rozenbaum W., Agut H. 1997; Detection of human Betaherpesvirinae in saliva and urine from immunocompromised and immunocompetent subjects. Journal of Clinical Microbiology 35:1600–1603
    [Google Scholar]
  12. Gessain A., Mauclere P., Froment A., Biglione M., Le Hesran J. Y., Tekaia F., Millan J., de The G. 1995; Isolation and molecular characterization of a human T-cell lymphotropic virus type II (HTLV-II), subtype B, from a healthy Pygmy living in a remote area of Cameroon: an ancient origin for HTLV-II in Africa. Proceedings of the National Academy of Sciences, USA 92:4041–4045
    [Google Scholar]
  13. Isegawa Y., Mukai T., Nakano K., Kagawa M., Chen J., Mori Y., Sunagawa T., Kawanishi K., Sashihara J., Hata A., Zou P., Kosuge H., Yamanishi K. 1999; Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. Journal of Virology 73:8053–8063
    [Google Scholar]
  14. Lacoste V., Kadyrova E., Chistiakova I., Gurtsevitch V., Judde J.-G., Gessain A. 2000; Molecular characterization of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 strains from Russia. Journal of General Virology 81:1217–1222
    [Google Scholar]
  15. Megaw A. G., Rapaport D., Avidor B., Frenkel N., Davison A. J. 1998; The DNA sequence of the RK strain of human herpesvirus 7. Virology 244:119–132
    [Google Scholar]
  16. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus. Journal of Virology 70:5975–5989
    [Google Scholar]
  17. Poirel L., Aubin J. T., Gautheret A., Malet I., Huraux J. M., Agut H. 1997; Use of inverse polymerase chain reaction to characterize a novel human herpesvirus 7 isolate. Journal of Virological Methods 64:197–203
    [Google Scholar]
  18. Poole L. J., Zong J. C., Ciufo D. M., Alcendor D. J., Cannon J. S., Ambinder R., Orenstein J. M., Reitz M. S., Hayward G. S. 1999; Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi’s sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. Journal of Virology 73:6646–6660
    [Google Scholar]
  19. Tanaka K., Kondo T., Torigoe S., Okada S., Mukai T., Yamanishi K. 1994; Human herpesvirus 7: another causal agent for roseola (exanthem subitum. Journal of Pediatrics 125:1–5
    [Google Scholar]
  20. Ureta-Vidal A., Angelin-Duclos C., Tortevoye P., Murphy E., Lepere J. F., Buigues R. P., Jolly N., Joubert M., Carles G., Pouliquen J. F., de The G., Moreau J. P., Gessain A. 1999; Mother-to-child transmission of human T-cell-leukemia/lymphoma virus type I: implication of high antiviral antibody titer and high proviral load in carrier mothers. International Journal of Cancer 82:832–836
    [Google Scholar]
  21. Wyatt L. S., Frenkel N. 1992; Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. Journal of Virology 66:3206–3209
    [Google Scholar]
  22. Zong J. C., Metroka C., Reitz M. S., Nicholas J., Hayward G. S. 1997; Strain variability among Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genomes: evidence that a large cohort of United States AIDS patients may have been infected by a single common isolate. Journal of Virology 71:2505–2511
    [Google Scholar]
  23. Zong J. C., Ciufo D. M., Alcendor D. J., Wan X., Nicholas J., Browning P. J., Rady P. L., Tyring S. K., Orenstein J. M., Rabkin C. S., Su I. J., Powell K. F., Croxson M., Foreman K. E., Nickoloff B. J., Alkan S., Hayward G. S. 1999; High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi’s sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations. Journal of Virology 73:4156–4170
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-82-12-3045
Loading
/content/journal/jgv/10.1099/0022-1317-82-12-3045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error