-
Volume 3,
Issue 12,
2021
Volume 3, Issue 12, 2021
- Abstracts from the Candida and Candidiasis Meeting 2021
-
- Poster Presentations
-
-
Discovering the chlamydospore regulatory network in Candida albicans
More LessA normal resident of healthy humans and warm-blooded animals, C. albicans is a commensal fungus that is also among the most common opportunistic pathogens of humans. C. albicans forms unique morphological structures called chlamydospores, which are large, spherical, thick-walled structures formed at the ends of hyphae that have unknown biological function. My goal is to discover the regulatory network controlling chlamydospore formation in C. albicans. By determining this network, we can gain insight into the biological roles of chlamydospores in the C. albicans lifestyle, better understand C. albicans morphological transitions, and determine the selective advantage (if any) provided by chlamydospores to this pathogenic fungus. To determine this regulatory network, I have screened a library of 211 C. albicans transcription factor (TF) homozygous deletion mutants to assay for their abilities to form chlamydospores under standard chlamydospore-inducing growth conditions. I have identified seven TF mutants that fail to produce any chlamydospores andthree TF mutants that produce high levels of chlamydospores relative to WT. To characterize the transcriptional changes occurring during chlamydospore formation, I have performed RNA sequencing (RNA-seq) on these identified regulator mutants to uncover the differentially regulated target genes of each chlamydospore regulator. I will use genome-wide chromatin immunoprecipitation followed by sequencing (ChIP-seq) on epitope-tagged versions of these regulators to determine which genes are directly under the control of each TF. RNA-seq coupled with ChIP-seq will allow me to determine the regulatory network controlling chlamydospore formation in C. albicans.
-
-
-
Evaluation of antifungal activity of Terminalia subspathulata bark and fruit extracts against azole-resistant Candida isolates
More LessBackground:Emerging resistant Candida species become a severe problem for public health. The study aims to examine the efficacy of Terminalia subspathulata bark and fruit extracts as an alternative source of antifungals for resistant strains of Candida species.
Methodology:Candida albicans was isolated between 4–5th interdigital foot space and C. parapsilosis were isolated from the left-hand third finger of male patients. Morphological and molecular methods identified the isolates. Antifungal susceptibility testing (AFST) was determined using azole derivatives, amphotericin B (AmpB) and echinocandins based on E-test and broth microdilution (BMD) methods. The AFST activity of the 10 μL methanolic extracts with concentrations between 1.25–10 mg/mL was assessed by disk diffusion method according to CLSI guidelines.
Results:The AFST results showed total resistance to all azoles (FLU, MIC ≥ 256 μg/ml and VOR, ITR and POS each with MIC ≥ 32 μg/ml). The BMD method agreed with E-test MICs. The T. subspathulata bark extract tested indicated activity on the C. albicans lawn with the zone of inhibition between 9–13 mm. The fruit extract indicated zone between 8–10 mm. Candida parapsilosis indicated susceptibility to bark extract with the zone of inhibition between 10–15 mm, while the fruit extract showed zone between 8–13 mm.
Conclusion:Despite azole resistance, the extracts showed good activity against the isolates. Findings showed alternatives to AmpB and echinocandins because of toxicity and parenteral administration, respectively. Based on our findings, our study first reports the medicinal value of T. subspathulata.
-
-
-
Drug tolerance facilitates the evolution of drug resistance in Candida albicans
BackgroundFor Candida albicans and Candidiasis, drug resistance is sometimes due to the pre-existence of genetic polymorphisms that bypass the mode of action of the drug, thus conferring a long-term survival benefit. In other cases, resistance is acquired via the evolution of de novo genetic polymorphisms. There is evidence that C. albicans possess a drug tolerance response which “buys time” for individuals to evolve beneficial mutations. Our goal here is to characterize this poorly understood epigenetic cytoprotective program at the single cell molecular level.
MethodsWe developed a nano-litre droplet based Candida single cell sequencing platform capable of transcriptionally profiling several thousand individual cells in an efficient manner. We exploit this platform to profile both untreated and drug exposed (incl. fluconazole, caspofungin and nystatin) populations at early time points post-treatment (tolerance) and late time points (resistance) in order to understand survival trajectories. The profile are compared with the matched sequenced genomes.
ResultsWe show that untreated Candida populations exhibit “bet hedging”, stochastically expressing cytoprotective transcriptional programs, and drug tolerant individuals partition into distinct subpopulations, each with a unique survival strategy involving different transcriptional programs. We observe a burst of chromosomal aberrations at two days post-treatment that differ between survivor subpopulation.
DiscussionOur single cell approach highlights that survivor subpopulations pass through a tolerance phase that involves a multivariate transcriptional response including upregulation of efflux pumps, chaperones and transport mechanisms, and cell wall maintenance. Together this suggests that targeting the tolerance response concomitantly with standard therapies could represent an efficient approach to ablating clinical persistence.
-
-
-
In silico screening leads to novel scaffolds with both antifungal and anti-NLRP3 inflammasome activity
More LessDue to structural similarities that exist between established inhibitors of the NLRP3-inflammasome, sulfonylureas Glyburide and MCC-950, and herbicidal-sulfonylureas, that specifically target fungal acetohydroxyacid synthase (AHAS), we sought to determine the potential for compounds to block both inflammation and inhibit fungal growth.
In silico screening of ∼250,000 compounds was used to identify a prioritized list of chemical structures capable of inhibiting both targets. Prioritization of the top 1% of scores identified ∼70 compounds with a diverse set of scaffolds for testing in vitro. Selected hits were used to assess anti-inflammatory function in a THP-1 challenge model with LPS+ATP and resulting IC50 values were obtained. MIC and hyphal-growth assays were conducted to determine potential antifungal activity using media depleted of branched chain amino acids isoleucine and valine, to confirm on target AHAS inhibition.
Identification of hits that exhibited low micromolar activity for NLRP3 and AHAS inhibition were selected for SAR study. In vitro testing of the analogs along with molecular docking led to increased knowledge for lead optimization of the potential hits.
In silico screening has resulted in IC50 (IL-1β release) and MIC50 (fungal growth) values with low μM potency against several Candida species. In vivo validation will further confirm the potential of the scaffolds for further synthetic-modification for the rationale design of novel dual-purpose drugs
-
-
-
Investigation of the interaction of keratinocytes and Candida species
More LessOur skin provides immunological protection against several pathogens. Skin epithelial cells respond to microbial stimuli in various ways, such as through the production of antimicrobial peptides or secretion of cytokines, although phagocytosis of potentially evading microbes was also reported.
Relatively little is known about how skin keratinocytes differentiate between the presence of pathogenic and commensal fungi. In this project, we aimed to investigate how human keratinocytes interact with different Candida species, as common colonizers of the skin. While C. albicans is a common cause of cutaneous candidiasis, C. parapsilosisis rarely associated with this disease.For the experimentshuman skin keratinocyte cell lines (HaCaT, HPV-KER)were applied andchallengedwith C. albicans (SC5314 and WO1 strains) and C. parapsilosis (GA1 and CLIB214 strains)strains.We aimedto determine the extent to which C. albicans and C. parapsilosis damage human keratinocytes, their attachment to host cells, the keratinocytes’ ability to internalize these fungi and to examinecytokine production in response to stimuli.
Our results suggest that C. albicans causes significantly more damage to human keratinocytes than C. parapsilosis and the HPV-KER cell line was more susceptibleto the infection. In both HaCaT and HPV-KER cells, the production of IL-6, IL-8, and CCL5 increased primarilyafter C. albicans infection. Based on the adhesion studies, there was a low degree of association in case of C. parapsilosis GA1 and CLIB214 compared to C. albicans SC5314 and WO1.
-
-
-
Identification and characterization of a fungal-selective glutaminyl tRNA synthetase inhibitor with potent activity against Candida albicans
Candida albicans is the leading cause of systemic candidiasis. Effective treatment is threatened by a dearth of antifungal options and the emergence of resistance. Thus, there is an urgent need to identify novel therapeutic targets to expand our antifungal armamentarium. A promising approach is the discovery of essential genes, as most antimicrobials target essential bioprocesses. Despite detailed characterization of gene essentiality in Saccharomyces cerevisiae,defining essential targets in the pathogen of interest is necessary due to the high level of divergence between these organisms. Thus, using a machine learning algorithm we generated a comprehensive prediction of all genes essential in C. albicans. We leveraged our essentiality predictions with high-throughput screening and chemogenomic datasets to assign the mechanism of action of a previously uncharacterized compound. We identified T-035897 as a molecule with potent bioactivity against C. albicans. Prior chemogenomic profiling in S. cerevisiae suggested that T-035897 targets the glutaminyl tRNA synthetase Gln4, whose homolog in C. albicans was predicted and verified to be required for viability. To confirm the mechanism of T-035897 in C. albicans, we performed haploinsufficiency profiling,which supported Gln4as the target. In parallel, selection of resistant mutants and targeted sequencing uncovered substitutions in the Gln4 catalytic domain. Moreover, T-035897 inhibited translation in afluorescence-based reporter assay. Finally, T-035897 selectively abrogated fungal cell growth in a co-culture model with mammalian cells. Thus, we highlight the power of leveraging essentiality datasets in order to characterize compounds with potent antifungal activity in an effort to unveil novel therapeutic strategies.
-
-
-
Role of SAGA complex subunits in gene regulation of Candida albicans
More LessThe SAGA (Spt-Ada-Gcn5-acetyltransferase) is an evolutionary conserved multidomain co-activator complex involved in gene regulation through its histone acetyltransferase (HAT) and deubiquitinase (DUB) functions. It is well studied in Saccharomyces cerevisiae, and recent reports from humans and Drosophila expand its importance from gene transcription regulation to transcription elongation, protein stability and telomere maintenance. In Candida albicans, little is known about the components of the SAGA complex and their influence in morphogenesis and stress response. In this work, we analysed individual components of the SAGA complex, their role in morphogenesis and responses to different signalling cues. We initially analysed conditionally repressed strains of SAGA complex subunits involved in the HAT function of the complex: Tra1, Ngg1, Spt7, Spt8, Taf5, Taf6, Taf9, and Taf10. It appears that the Tra1 might be essential for the viability of C. albicans, as we failed to obtain homozygous deletions although it showed detectible growth in the conditionally repressed strain. Also, we observed that TBP- associated factors are essential in C. albicans, possibly due to their role in the transcription initiation factor TFIID instead of SAGA. We also detected that the Spt8 repressed mutant was extensively invasive in YPD at 300C while a repressed Ngg1 was considerably less invasive compared to its wild type. Also, we have seen that the mutations affecting TBP-binding ability confer susceptibility to drugs, temperature, osmotic, oxidative and DNA damage stress. Further, it seems that the modules of SAGA complex might have antagonistic roles in expression regulation but this needs more in-depth study.
-
-
-
A variant ECE1 allele contributes to reduced pathogenicity of Candida albicans during vulvovaginal candidiasis via altered secretion of candidalysin
More LessBackground:Candida albicans is the primary etiological agent of vulvovaginal candidiasis (VVC) and exerts its pathogenicity through secretion of the peptide toxin candidalysin encoded by the ECE1 gene. A highly conserved variant ECE1 sequence exists across a diverse set of clinical isolates. Thus, we sought to determine the relative pathogenicity and mechanism(s) associated with this alternative ECE1 allele.
Methods:Isogenic strains harboring WT or variant ECE1 sequences were engineered in an Δ/Δece1 background. After confirmation of equivalent expression by qPCR, pathogenicity of strains were tested using in vitro epithelial cell and in vivo VVC models of infection and LDH, IL-1β, neutrophil levels monitored. Follow up studies using synthetic candidalysin peptide were also performed. Lastly, a panel of ECE1 chimeras were constructed to assess potential processing defects and detected by a novel HiBiT-tagging approach.
Results:Strains transformed with either the variant full length ECE1 or candidalysin allele, as compared to the WT sequence, demonstrated significantly reduced immunopathogenicity during in vitro or in vivo infection despite equivalent fungal burden. Interestingly, epithelial challenge with WT or variant synthetic peptide revealed similar capacity to elicit damage and IL-1β. Allele profiling and ECE1 chimera experiments demonstrated that defects in pathogenicity are at least partly due to inefficient ECE1 processing at the peptide 2-peptide 3 junction.
Discussion:The ECE1 gene displays conserved polymorphisms that alter candidalysin secretion and strain pathogenicity. Future work is focused on determining specific amino acid sequences that contribute to these affects across clinical isolates and disease states.
-
-
-
ID-CARD: A clade-specific molecular assay for the detection of 25 Candida spp. causing candidemia based on antifungal susceptibility patterns and in vitro testing of the antifungal activity of a synthetic antimicrobial peptide derived from human lactoferrin (hLF1-11).
More LessFungal infections are a serious health concern affecting over 1.5 million individuals annually. ID-CARD aims to improve diagnostics taking into account phylogeny and antifungal susceptibility patterns of Candida spp. involved in candidemia.Twenty-five Candida spp. were chosen. Based on ribosomal DNA sequences, clade-specific primers/Taqman probes were designed. Different multiplex panels consisting of four clades that exhibited similar antifungal susceptibility profiles were created. To create the groups, we tested fluconazole and anidulafungin with broth microdilution according to EUCAST against 3-5 isolates/species (n=121), which were also used for specificity testing of the molecular assay. Furthermore, we tested the in vitro activity of hLF(1-11) peptide against isolates that exhibited elevated minimum inhibitory concentrations (MICs) for one or both of the drugs. The groups created are : i. Lodderomyces, Kluyveromyces, Metschnikowiaceae Sensitive, Internal control, (all with low MICs) ii. Pichiaceae, Nakaseomyces, Wickerhamomycetaceae, Debaryomyces & Diutina, (all with high MICs to azoles) and iii. Yarrowia, Wickerhamiella & Meyerozyma, Candida auris, Candida haemulonii complex (all with high MICs to both azoles & echinocandins). The primers/probes showed 100% specificity and capacity for multiplexing. In vitro experiments indicated that hLF(1-11) is fungicidal against various Candidaspp. A synergistic effect of antifungal and hLF(1-11) against various Candida species was shown as combinations of the peptide with antifungals were more effective than these alone ID-CARD will contribute to a fast and reliable molecular detection of yeasts involved in candidiasis. AMPs is a novel way to treat Candida spp. exhibiting high MICs to commonly used antifungal drugs.
-
-
-
A systemic analysis of amino acid transporters identifies Gnp2 as the main proline permease in Candida albicans
More LessThe tight association of Candida albicans with the human host has driven the evolution of mechanisms that permit metabolic flexibility. Amino acids, present in free form or peptide bound, are an abundant carbon and nitrogen source in many host niches. Further,the capacity to sense and utilize certain amino acids, like proline, is directly linked to virulence. The C. albicans genome encodes for at least 24 amino acid permeases (AAPs), highlighting the importance of flexible amino acid uptake for fungal growth and virulence. Although the substrate specificity and role of certain AAPs has been investigated, a comprehensive characterization was missing. Therefore, we assembled a library of AAP deletion strains, which was tested for resistance to toxic amino acid analogs. Most striking was the specific resistance of gnp2Δ to the proline analog 3,4-dehydroproline. Subsequent tests validated that Gnp2 is a specific proline permease in C. albicans, which is contrary to the model yeast Saccharomyces cerevisiae where proline transport is mediated by four permeases. Furthermore, the induction of GNP2 appears to be independent of the SPS (Ssy1-Ptr3-Ssy5) regulatory pathway that controls proline utilization in the model yeast, pointing towards rewired proline uptake in C. albicans. Additionally, strains lacking GNP2were unable to respond to proline-induced filamentation, displayed decreased cytotoxicity to macrophages and showed increased sensitivity to oxidative stress, underlining the importance of proline uptake for fungal virulence. Taken together, the role of Gnp2-mediated proline uptake illustrates the importance of metabolism-driven virulence in C. albicans.
-
-
-
The microbial ecology of Candida albicans strains CHN1 and SC5314 in mice
More LessStrain SC5314 is the most widely studied strain of Candida albicans. Despite C. albicans being the most commonly isolated yeast from the human gastrointestinal (GI) microbiome, strain SC5314 does not stably colonize the mouse GI tract long term, even after antibiotic disruption. In contrast, strain CHN1 will stably colonize the mouse GI tract long term. Comparative genomic analysis of strain CHN1 indicates that it belongs to a different evolutionary clade of C. albicans than strain SC5314. Previous studies from our laboratory have shown that colonization by strain CHN1 causes a change in the GI bacterial microbiome of mice and predisposes them to more robust Th2 immune responses. Despite this, little is known about the GI microbial ecology of SC5314 vs. CHN1 and subsequent host responses. Using a short-term antibiotic disruption model in C57BL/6 mice, we have been able to observe significantly different colonization kinetics between these two C. albicans strains, with CHN1 establishing stable long-term colonization. In contrast, colonization by SC5314 was lower, highly variable and cage-dependent. C. albicans colonization kinetics impacted the composition of the bacterial microbiome with a marked effect on the levels of Lactobacillus and Enterococcus. qPCR analysis of 46 host immune response genes did not detect significant differences in host gene expression between SC5134 and CHN1 colonized mice, except for chitinase expression. Thus, these studies suggest that yeast-bacteria interactions in the microbiome may be far more important in determining long-term colonization potential of C. albicans and secondary immunomodulatory effects.
-
-
-
Tell me what type of extracellular vesicles you secrete, and I will tell you who you are: yeast or hypha
The transition between yeast and hyphal morphologies plays a crucial role in the pathogenicity of Candida albicans. Recent studies have pointed out the great relevance of extracellular vesicles (EVs) secreted by microorganisms in a wide variety of biological processes including interaction with the host. Therefore, the main objective of this work was to compare the EVs secreted by yeast and hyphal forms to shed light on C. albicans-host interaction.
EVs were obtained by ultracentrifugation of the culture medium supernatant and analysed by mass spectrometry. They were characterized by transmission electronic microscopy (TEM) and dynamic light scattering (DLS).
DLS and TEM analysis showed that yeast EVs were significantly bigger than hyphal EVs, being most of them in the range between 400 to 500nm while hyphal EVs were ranged mostly around 100-200nm.
Proteomic analysis showed greater protein diversity in hyphal EVs when compared to yeast EVs (up to 1700 different proteins identified versus 300), although less amount of total protein was obtained. Gene Ontology (GO) analysis showed that yeast EVs were enriched in surface proteins while hyphal EVs, although containing also most of these surface proteins, were also significantly and exclusively enriched in proteins involved in protein metabolism (ribosomal proteins, many aminoacid-pathway enzymes and proteasome) and cellular transport. The differences between YEVs and HEVs also prompted a different immune host response, as tested with macrophage cell cultures and human sera from patients with invasive candidiasis.
All these differences point out a possible different biogenesis and roles of EVs secreted by both morphologies.
-
-
-
Candida glabrata MSH2 deletion increases antifungal tolerance in vitro and during intra-abdominal candidiasis (IAC), it does not impact pathogenesis of peritonitis or intra-abdominal abscesses
More LessBackground:IAC is the second most common type of invasive Candidiasis, but its pathogenesis is poorly understood. We have shown that Candida albicans DNA damage response genes are strongly induced within intra-abdominal abscesses. Deletion of C. glabrata MSH2, A DNA mismatch repair (MMR) gene, results in a mutator phenotype that facilitates multidrug resistance in vitro and in mouse gastrointestinal tracts. Our goal was to determine if CGMSH2 Contributed to pathogenesis or resistance to the new antifungal rezafungin during IAC.
Methods:We createdΔMSH2 in BG2 using SAT-Flipper, and tested virulence and rezafungin responses in a mouse model of IAC.
Results:ΔMSH2 displayed no growth defects at 30°C in liquid (YPD, Ypglycerol) or solid media (YPD+0.02% MMS, 1MM H2O2, 1M NACL, 20 UG/ML CW, 250 UG/ML OR 0.02% SDS). ΔMSH2 longevity in YPD was comparable to BG2. Caspofungin-, Rezafungin- and Fluconazole-resistant mutants arose 24-, 16- and 3-fold more often, respectively, for ΔMSH2 than BG2 (108-106 CFU overnight in YPD, selected on 8XMIC-Containing plates). However, respective minimum inhibitory concentrations (MICS) were not different, nor were rezafungin time-kills.ΔMSH2 was comparable to BG2 in peritonitis and abscess burdens in mouse IAC.ΔMSH2 demonstrated significantly greater caspofungin- and fluconazole-tolerance than BG2 in abscesses. Rezafungin reduced peritonitis and abscess burdens ofΔMSH2,BG2 ANDFKS mutant strains to similar extents.
Conclusions:CgMSH2 deletionincreased the frequency of spontaneously-arising echinocandin- and fluconazole-resistant colonies in vitro and tolerance in intra-abdominal abscesses, but it did not attenuate virulence or rezafungin responses during IAC.
-
-
-
Ambisome shows potent anti-Candida auris in vitro and in vivo activity
More LessCandida auris is an emerging multidrug resistant Candida species that has been reported in many parts of the world for causing severe illness in hospitalized patients especially bloodstream infections. The challenge with this type of yeast is its resistance to commonly used antifungal drugs, thus identifying antifungals that are effective against this species is critical.
In this study, we determined the in vitro activity of Ambisome against 35 clinical isolates of C. auris using minimum inhibitory concentration (MIC) assay as well as the efficacy of Ambisome compared to Amphotericin B and fluconazole using a C. auris murine disseminated model.
Antifungal activity of C. auris against Ambisome and comparators was assessed using amicrodilution method performed according to the Clinical and Laboratory Standard Institute (CLSI) M27-A4 methodology. Mice were immunocompromised and challenged with 3 x 107 C. auris blastopores in 0.1 ml of normal saline (via the tail vein). Treatment efficacy was assessed by determining reductions in mortality as well as decrease in tissue fungal burden (CFUs).
Ambisome showed lower MIC50 and MIC90 values (1 and 2 μg/mL, respectively) than the comparators tested. Significant efficacy was observed in the Ambisome 7.5 mg/kg -treated group (100% and 90% survival by day 7- and 14-days post inoculation, respectively). Additionally, Ambisome and fluconazole treated groups showed significant reduction in CFUs in the kidneys (P- values of 0.028 and 0.022, respectively) compared to the untreated group.
Our data shows that Ambisome shows significant antifungal activity against C. auris in vitro as well as in vivo.
-
-
-
Farnesol abrogates biofilm- and efflux pump- associated genes in drug resistant Candida auris strains
More LessBackground:Candida auris, a decade old Candida species, has been identified globally as a significant nosocomial multidrug resistant (MDR) pathogen responsible for causing invasive outbreaks. Biofilms and over expression of efflux pumps such as Major Facilitator Superfamily and ATP Binding Cassette are known to cause multidrug resistance in Candida species, including C. auris. Therefore, targeting these factors may prove an effective approach to combat MDR in C. auris.
Methods:In this study, 25 clinical isolates of C. auris from different hospitals of South Africa were used. Antifungal susceptibility profile of all the isolates against commonly used drugs was determined following CLSI recommended guidelines. Rhodamine-6-G extracellular efflux and intracellular accumulation assays were used to study active drug efflux mechanism. We further studied the role of farnesol in modulating development of biofilms and drug efflux in C. auris. Down-regulation of biofilm- and efflux pump- associated genes by farnesol was also investigated. CLSM analysis for examining C. auris biofilm architecture among treated and untreated isolates.
Results:Most of the isolates (twenty-two) were found resistant to FLZ whereas five were resistant to AmB. All the isolates were found capable of biofilm formation and ornamented with active drug efflux mechanism. The MIC for planktonic cells ranged from 62.5-125 mM and for sessile cells was 125 mM (0 h and 4 h biofilm) and 500 mM (12 h and 24 h biofilm), CLSM studies also confirmed these findings. Farnesol also blocked efflux pumps and down-regulated biofilm- and efflux pump- associated genes.
Conclusion:Modulation of biofilm- and efflux pump- associated genes by farnesol represent a promising approach in combating C. auris infection.
-
-
-
Role for the phosphatidylinositol 3-phosphate 5-kinase in antifungal tolerance in Candida glabrata
More LessCandida glabrata is an opportunistic fungal pathogen of humans, which is intrinsically less susceptible to widely used azole antifungals, that block ergosterol biosynthesis. The major azole resistance mechanisms include mitochondrial dysfunction and multidrug efflux pump overexpression. In the current study, we have uncovered an essential role for the actin cytoskeletal network reorganization in survival of the azole stress. We demonstrate for the first time that the azole antifungal fluconazole induces remodelling of the actin cytoskeleton in C. glabrata, and genetic or chemical perturbation of actin structures results in intracellular sterol accumulation and azole susceptibility. Further, we showed that the vacuolar membrane-resident phosphatidylinositol 3-phosphate 5-kinase (CgFab1) is pivotal to this process, as CgFAB1 disruption impaired vacuole homeostasis and actin organization. We also showed that the actin depolymerization factor CgCof1 binds to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), and CgCof1 distribution along with the actin filament-capping protein CgCap2 is altered upon both CgFAB1disruption and fluconazole exposure. Additionally, while the F-actin-stabilizing compound jasplakinolide rescued azole toxicity in cytoskeleton defective-mutants, the actin polymerization inhibitor latrunculin B rendered fluconazole fully and partially fungicidal in azole-susceptible and azole-resistant C. glabrata clinical isolates, respectively. These data underscore the essentiality of actin cytoskeleton reorganization for azole stress survival. Lastly, we have also shown a pivotal role of CgFab1 kinase activity regulators, CgFig4, CgVac7 and CgVac14, through genetic analysis, in azole and echinocandin antifungal tolerance. Altogether, I shall present our findings on functions and metabolism of the PI(3,5)P2 lipid in antifungal tolerance and virulence of C. glabrata.
-
-
-
Novel antifungal activity of Q-Griffithsin, a broad-spectrum antiviral lectin
More LessBackgroundThere is a rising global trend in candida strains with high resistance to fluconazole and other antifungal drugs, hence the need for novel agents. Here, we investigated the anti-Candida activity of Q-Griffithsin (Q-GRFT), a lectin naturally produced by the red-sea algae, Griffithsia spp.
MethodsTo assess in vitro growth inhibitory activity, C. albicans was incubated with Q-GRFT on agar plates and in broth media. We investigated GFP-bound Q-GRFT’s ability to adhere to C. albicans using fluorescence microscopy and fluorescence intensity assessments. To demonstrate in vivogrowth inhibitory activity, CBA/J mice were treated per vaginam with Q-GRFT followed by challenge with C. albicans, and fungal burden determined following vaginal lavage.
ResultsWild type fluorescently labeled Q-GRFT displayed higher fluorescence than the lectin-binding site deficient variant following incubation with C. albicans. Q-GRFT localized around the fungal cells and bound to α-mannan in the cell wall. Q-GRFT significantly inhibited C. albicans growth in broth and on agar plates, disrupted the integrity of the cell wall, and induced ROS formation. The lectin significantly inhibited the growth of C. glabrata, C. parapsilosis and C. krusei, with modest activity against C. auris CDC388 and C. auris CDC389 strains in vitro. Topical treatment resulted in a lower fungal burden compared to the vehicle control group in vaginal candidiasis.
ConclusionQ-GRFT binds to and inhibits C. albicans growth both in vitro and in vivo. Further studies are needed to establish the mechanism of growth inhibition.
-
-
-
CRISPR-Cas9 mutagenesis and single gene reintegration suggests functional diversity within the Candida albicans TLO gene family
More LessCandida albicans has between 10-15 Telomere-associated ORF family(TLO)genes, whereas its closest relative, Candida dubliniensis, has two. The Tlo proteins are components of the Mediator complex which plays an important role in transcriptional regulation. CRISPR-Cas9 mutagenesis was used to generate a TLOnull mutant of C. albicans. Phenotypic analysis of the mutant showed significantly reduced fitness, with major defects in growth rate, morphogenesis, stress resistance and virulence in a Galleria mellonellamodel. Clade representative TLOα1, TLOβ2 and TLOγ11constructs were reintroduced into the null mutant background to determine if members of the TLO gene family exhibit functional differences. The genes were reintroduced under the control of the TET1 and ENO1promoters. TLOα1and TLOβ2expression restored stress tolerance and growth rate, in some cases to the level of the WT. TLOβ2expression also showed a dramatic effect on morphology resulting in constitutive true hyphal growth. Moderate expression of TLOγ11 had no detectable effect on many of the phenotypes tested, however overexpression increased biofilm formation in Spider medium, and also conferred increased resistance to cell wall stressors. These data suggest that individual TLO genes have distinct functions and that the diversity within the TLO family may contribute to the relative success of C. albicans as a coloniser and pathogen of humans.
-
-
-
Tolerance to fluconazole in Candida albicans is regulated by temperature and aneuploidy
More LessCandida albicans is a prevalent human fungal pathogen. Azoles are the most widely used antifungal drugs. Drug tolerance in bacteria is well defined and thoroughly studied, but in fungi, the definition of drug tolerance and the mechanism that drive it are not well understood. Here, we found that a large proportion of clinical isolates were intrinsically tolerant to fluconazole, and/or could be induced by high temperature (37°C) to become tolerant (conditionally tolerant). When treated with inhibitory doses of fluconazole, non-tolerant strains became tolerant by forming aneuploids involving different chromosomes, with chromosome R duplication as the most recurrent mechanism. Tolerance determines the ability to grow in the presence of fluconazole and other azoles, in a manner independent of the MIC. Both temperature conditional tolerance and the associated aneuploidy were sensitive to FK506, an inhibitor of calcineurin. Intrinsic and conditional tolerance were also abolished by deletions of genes encoding the calcineurin (CMP1 and CNB1). However, the dependence of tolerance on calcineurin could be bypassed by a different aneuploid chromosome. Thus, fluconazole tolerance in C. albicans is regulated by temperature and by aneuploidy and is dependent upon aneuploidy, but this dependence can be bypassed by an additional aneuploidy.
-
-
-
Preliminary study into the effects of tobacco smoke on Candida albicans
More LessBackground:Denture-stomatitis (DS) is the most common form of oral candidosis with increased prevalence in cigarette smokers (Akram et al. 2018). Interestingly, tobacco condensate (TC) increases Candida albicans adhesion, growth, biofilm-formation, virulence gene expression (Semlali et al. 2014)and hyphal production (Awad and Karuppayil 2018). We hypothesised that TC-treated denture acrylic would therefore affect C. albicans within acrylic biofilms.
Methods:Acrylic discs (pre-conditioned with TC, artificial saliva (AS) or water) were incubated at 37°C with C. albicans (n=6) for 90 min or 24 h. Adherent Candida were stained with calcofluor white and confocal laser scanning microscopy (CLSM) used to assess levels of adherence, biofilm and hyphal numbers. Expressed virulence genes (n=7) were measured by qPCR.
Results:CLSM showed that effects of TC-treatment were strain dependent. Adherence of C. albicans PTR/94 to TC-treated surfaces was significantly (P<0.002) lower than on the untreated control. Biofilm levels of PTR/94 after 24 h were found to be significantly higher on AS-treated acrylic than the TC-treated and untreated control. Five strains had significantly fewer filamentous forms after 90 min on TC-treated surfaces. TC-treatment promoted hyphal levels for strain 705/93 after 24h.
Conclusion:TC pre-conditioning altered adherence and biofilm coverage of C. albicans to acrylic surfaces and influenced hyphal development. Work is ongoing to ascertain the significance of these effects on C. albicans pathogenicity.
Akram et al. (2018). Journal of Oral Science 60(1):115–120.
Awad and Karuppayil (2018). American Journal of Clinical Microbiology and Antimicrobials1(3):1–6.
Semlali et al. (2014). BMC Microbiology. 14:61
-
Volumes and issues
Most Read This Month
