The tight association of with the human host has driven the evolution of mechanisms that permit metabolic flexibility. Amino acids, present in free form or peptide bound, are an abundant carbon and nitrogen source in many host niches. Further,the capacity to sense and utilize certain amino acids, like proline, is directly linked to virulence. The genome encodes for at least 24 amino acid permeases (AAPs), highlighting the importance of flexible amino acid uptake for fungal growth and virulence. Although the substrate specificity and role of certain AAPs has been investigated, a comprehensive characterization was missing. Therefore, we assembled a library of AAP deletion strains, which was tested for resistance to toxic amino acid analogs. Most striking was the specific resistance of gnp2Δ to the proline analog 3,4-dehydroproline. Subsequent tests validated that Gnp2 is a specific proline permease in , which is contrary to the model yeast where proline transport is mediated by four permeases. Furthermore, the induction of GNP2 appears to be independent of the SPS (Ssy1-Ptr3-Ssy5) regulatory pathway that controls proline utilization in the model yeast, pointing towards rewired proline uptake in . Additionally, strains lacking GNP2were unable to respond to proline-induced filamentation, displayed decreased cytotoxicity to macrophages and showed increased sensitivity to oxidative stress, underlining the importance of proline uptake for fungal virulence. Taken together, the role of Gnp2-mediated proline uptake illustrates the importance of metabolism-driven virulence in .

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error