1887

Abstract

is an opportunistic fungal pathogen of humans, which is intrinsically less susceptible to widely used azole antifungals, that block ergosterol biosynthesis. The major azole resistance mechanisms include mitochondrial dysfunction and multidrug efflux pump overexpression. In the current study, we have uncovered an essential role for the actin cytoskeletal network reorganization in survival of the azole stress. We demonstrate for the first time that the azole antifungal fluconazole induces remodelling of the actin cytoskeleton in , and genetic or chemical perturbation of actin structures results in intracellular sterol accumulation and azole susceptibility. Further, we showed that the vacuolar membrane-resident phosphatidylinositol 3-phosphate 5-kinase (CgFab1) is pivotal to this process, as CgFAB1 disruption impaired vacuole homeostasis and actin organization. We also showed that the actin depolymerization factor CgCof1 binds to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), and CgCof1 distribution along with the actin filament-capping protein CgCap2 is altered upon both CgFAB1disruption and fluconazole exposure. Additionally, while the F-actin-stabilizing compound jasplakinolide rescued azole toxicity in cytoskeleton defective-mutants, the actin polymerization inhibitor latrunculin B rendered fluconazole fully and partially fungicidal in azole-susceptible and azole-resistant clinical isolates, respectively. These data underscore the essentiality of actin cytoskeleton reorganization for azole stress survival. Lastly, we have also shown a pivotal role of CgFab1 kinase activity regulators, CgFig4, CgVac7 and CgVac14, through genetic analysis, in azole and echinocandin antifungal tolerance. Altogether, I shall present our findings on functions and metabolism of the PI(3,5)P2 lipid in antifungal tolerance and virulence of .

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.cc2021.po0065
2021-12-17
2022-01-28
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.cc2021.po0065
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error