-
Volume 3,
Issue 12,
2021
Volume 3, Issue 12, 2021
- Abstracts from the Candida and Candidiasis Meeting 2021
-
- Poster Presentations
-
-
FunHoMic: A Marie Skłodowska-Curie Innovative Training Network for the study of the Fungus-Host-Microbiota interplay
Nathaniel Cole, Benoît Marsaux, Diletta Rosati, Margot Delavy, Daria Kosmala, Zixuan Xie, Ann-Kristin Kaune, Marisa Valentine, Sayoni Chakraborty, Manjyot Kaur, Leovigildo Rey Alaban, Moran Morelli, Ricardo Fróis-Martins, Alan Walker, Pieter Van den Abbeele, Mihai Netea, Marie-Elisabeth Bougnoux, Chaysavanh Manichanh, Carol Munro, Bernhard Hube, Ilse Jacobsen, Karine Roget, Vincent Thomas, Karla Queiroz, Salomé Leibundgut-Landmann, Alistair Brown and Christophe d'EnfertIntroductionThe FunHoMic project is a Marie Skłodowska-Curie Innovative Training Network comprising 13 PhD students, 8 academic partners and 3 industry partnersaimingto understand the interplay between fungi, hostsand microbiota to improve prevention and treatment of fungal infections.
ImportanceAbout 2 billion people suffer fungal infections, which have a mortality rate close to that of malaria or breast cancer. Candida albicans has a high clinical and economic burden, making it of particular interest to the FunHoMic project. 70% of women experience at least one episode of vulvovaginal candidiasis (“thrush”) during their lifetime; 8% suffer recurring infections. C. albicans may live as a commensal but can cause symptoms when the fungus-host-microbiota equilibrium is disrupted. Infections by C. albicans have a significant clinical impact, with fatalities in severe cases. Many factors are associated with C. albicans infections; intensive care, neutropenic and diabetic patients are most at risk of systemic infection. Rising antifungal drug resistance has led to certain C. albicans infections having no treatment option.
AimThe FunHoMic consortium combines projectson fungal pathogenesis, immunology, microbial ecology and’omics technologies to understand and exploit interactions between fungus, host and microbiota. Identification of novel bio markers on the fungal side such as genetic polymorphisms or on the host side such asmicrobiota profiles, metabolites and/or immune markers can lead to patient classification based on relative risk of infection. This could be the beginning of personalised management for fungal infections using preventive or therapeutic interventions like new antifungals, immune modulators or Live Biotherapeutic Products (LBPs).
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the MarieSklodowska-Curie grant agreement No 812969.
-
-
-
A novel CRISPRi platform to study the role of essential genes in antifungal drug-resistant Candida albicans isolates
With the emergence of antifungal resistant Candida albicans strains, the need for new antifungal drugs is critical in combating this fungal pathogen. Investigating essential genes in C. albicans is a vital step in characterizing putative antifungal drug targets. As some of these essential genes are conserved between fungal organisms, developed therapies targeting these genes have the potential to be broad range antifungals. In order to study these essential genes, classical genetic knockout or CRISPR-based approaches cannot be used as disrupting essential genes leads to lethality in the organism. Fortunately, a variation of the CRISPR system (CRISPR interference or CRISPRi) exists that enables precise transcriptional repression of the gene of interest without introducing genetic mutations. CRISPRi utilizes an endonuclease dead Cas9 protein that can be targeted to a precise location but lacks the ability to create a double-stranded break. The binding of the dCas9 protein to DNA prevents the binding of RNA polymerase to the promoter through steric hindrance thereby reducing expression. We recently published the novel use of this technology in C. albicans and are currently working on expanding this technology to large scale repression of essential genes. Through the construction of an essential gene CRISPRi-sgRNA library, we can begin to study the function of essential genes under different conditions and identify genes that are involved in critical processes such as drug tolerance in antifungal resistant background strains. These genes can ultimately be characterized as putative targets for novel antifungal drug development, or targeted as a means to sensitize drug-resistant strains to antifungal treatment.
-
-
-
Extracellular RNA as a potential activator of Neutrophil Extracellular Traps by Candida albicans biofilm
More LessNeutrophils represent the first line of innate host defense. The ability to inhibit the development of infections is associated with the involvement of several fighting strategies. The still poorly understood mechanism is netosis, involving the release of Extracellular Neutrophil Traps (NETs). NETs are complexes of chromosomal DNA and granule content. Such a web-like structure inhibits the spread of invaders.
Netosis plays a significant role in combating Candida albicans infections. It has been shown that several factors, composing C. albicans cell surface mediate NETs production. However, the development of difficult to eradicate fungal infection is associated with the formation of the biofilm structure, which partially protects the pathogen cells from contact with the host’s immune system. One of the reasons for the creation of a such protective environment is the production of the extracellular matrix (ECM). The major components of the C. albicans ECM layer are lipids, proteins, carbohydrates but also extracellular nucleic acids, among which we observed a significant RNA content.
Considering that the ECM consisting of RNA molecules is one of the first lines of contact between biofilms and neutrophils, our current studies aimed to assess the potential role of extracellular RNA in the triggering of the netosis process by human neutrophils in vitro. We showed that RNA purified from C. albicans biofilm structure and the whole cells have the capability to induction of ROS-dependent netosis pathway. Additionally, cell migration analysis indicate that RNA molecules may also be an effective chemotactic agent. This work was supported by NCN (2019/33/B/NZ6/02284).
-
-
-
The impact of lemongrass, oregano, and thyme essential oils on Candida albicans’ virulence factors
More LessIncreased systemic infections and growing resistance of Candida species in immunosuppressed people have prompted research for additional treatment options. The purpose of this study was to investigate the potential of lemongrass, oregano, and thyme essential oils tested individually, combined, and combined with the antifungal agents fluconazole and caspofungin to kill Candida albicans isolates in a controlled laboratory setting. A quantitative design was used to analyze the experimental data collected and investigate risk factors related to age, gender, race, and co-morbidities. Kill rates of lemongrass, oregano, and thyme essential oils individually and combined, kill rates of fluconazole, caspofungin, and the kill rates when the antifungals were each combined with the three essential oils were compared using 117 isolates recovered from bloodstream infections between January 2009 through August 1, 2017. There were statistically significant increases in kill rates when the isolates were exposed to any of the combinations of essential oils tested. Data on the covariates age, gender, race, and co-morbidities were assessed for risk factors related to Candida albicans bloodstream infections. The age group 25-34, kidney failure, and solid organ tumor cancer, were all statistically significantly associated with an increased risk for Candida albicans bloodstream infections and multiple organ failure was negatively associated with the risk. Through the use of essential oils, the ability to reduce the number of patients becoming infected with life-threatening yeast infections could not only reduce mortality but also reduce the costs associated with serious infections.
-
-
-
Recovery of Candida spp. from a denture rat model
Denture stomatitis is a common infection in denture wearers. This study evaluated the recovery of Candida spp. from the palate of Wistar rats after using an acrylic device with single and mixed-species of Candida spp. After approval of the Ethics Committee, 84 male and female Wistar rats were used. Custom-made acrylic devices were fabricated for each animal and sterilized by microwave irradiation. Single and mixed species biofilms of C. albicans (Ca), C. glabrata (Cg), and C. tropicalis (Ct) were grown on the devices for 48 h at 37°C. Rats were anesthetized and the devices were cemented on the molar teeth (n=5 for each sex and Candida spp.). Rats received a carbohydrate-rich diet. Single and mixed species were inoculated in the oral cavity thrice after three-day intervals. Controls received only dentures without Candida spp. After 4 weeks, the devices were removed, the palates were swabbed, and diluted samples were plated on Agar Sabouraud Dextrose and CHROMAgar Candida for colony counting and presumptive identification, respectively, after 48 h. Data were analyzed by 3way ANOVA (α=5%). There was a significant interaction (p=0.003) between sex and species. For females, all groups recovered significant values (p≤0.027) compared with controls. For males, groups with Ct as single and dual-species showed the lowest values without difference (p≥0.183) with the control. The groups with triple-species showed the highest values but without difference (p≥0.071) with the groups with single and dual-species, except males with Ct. Ct alone showed reduced recovery from palate of male rats.
-
-
-
Molecular epidemiology of Candida auris in Qatar using whole genome sequence data
Candida auris is an emerging, multidrug resistant fungal pathogen that has become a public health threat worldwide. Candida auris spreads easily among patients within and between hospitals, and the incidence of infections has increased substantially in the last decade. Multiple C. auris outbreaks have been reported worldwide including India, USA and United Kingdom. Infections and outbreaks caused by C. auris have also been reported in the Middle East region including Kuwait, Oman, Saudi Arabia, and Qatar; however, the origin of these isolates is largely unknown. This study uses whole genome sequencing (WGS) data to determine the epidemiology and the drug resistance mutations from C. auris in Qatar. Forty samples isolated from the patients and the hospital environment were sequenced by Illumina Nextseq. Core genome SNPs revealed that all isolates belonged to the Indian lineage, which could be originated from the expatriate labour from South Asia. The genetic variability among the isolates was low but comprised of more than one genetic cluster. The environmental isolates were identical to the clinical isolates, and the isolates from patients of different hospitals/outbreaks clustered together, suggesting the transmission of C. auris could be linked to infected/colonized patients and the hospital environment. Mutations associated with azole and echinocandin resistance were discussed.
-
-
-
Farnesol secretion as a possible driving force for maintaining Candida albicans as a diploid
More LessCandida albicans is a pathogenic dimorphic fungus which is invariably found as a diploid in patients. C. albicans secretes the sesquiterpene farnesol both as a quorum sensing molecule which blocks the yeast to hypha conversion and as a virulence factor for pathogenicity. 20-25 μM farnesol kills other competing yeasts and fungi, often by triggering apoptosis, and yet wild type diploid C. albicans tolerates 300-500 μM farnesol. The recent availability of 10 haploid strains of C. albicans (5 mating type aand 5 mating type α) allowed us to compare their production of and sensitivity to farnesol. On average, the heterozygous diploid strains of C. albicans were 2.4 times more resistant to 20-40 μM farnesol than MTLa haploid cells and 4.6 times more resistant than MTLα haploid cells. Furthermore, the MTLa haploids produce approximately 10 times more farnesol than do the MTLα haploids. Prior work concluded that haploid strains exhibited such low fitness that C. albicans was thought to be an obligate diploid. We now suggest that increased farnesol secretion by the MTLa haploids and increased farnesol sensitivity of the MTLα haploids is a mechanism for maintaining the dominant heterozygous diploid status of C. albicans. This idea is based on the observation that the a-factor peptide pheromone is farnesylated but the α-factor pheromone is not farnesylated. Our working hypothesis is that farnesol is secreted in part via Ste6 and imported in part via Ste3, the proteins which export and import the farnesylated a-pheromone. We also examined whether farnesol was excreted in extracellular vesicles.
-
-
-
Characterization of the mechanism of action of the Enterococcus faecalis bacteriocin EntV on Candida albicans
Candida albicans shares communal niches with multiple bacterial species. Previous work from our group demonstrated that the Gram-positive bacterium Enterococcus faecalis, a normal constituent of the oral and gut microbiome that is often co-isolated with C. albicans, antagonizes hyphal morphogenesis, biofilm formation, and virulence in C. albicans. These effects are mediated by EntV, a bacteriocin and antimicrobial peptide produced by E. faecalis. The main aim of this work is to unveil the molecular mechanism behind the activity of EntV on C. albicans. Using fluorescence microscopy, we determined that EntV binds to the cell walls of several Candida species, including both yeast and hyphae of C. albicans. Contrary to other antimicrobial peptides, it does not cause cell lysis and does not synergize with cell wall damaging agents. Moreover, we screened a library of C. albicans mutants for strains with altered susceptibility to the peptide; most of the positive hits had functions related to cell wall maintenance and were further screened to ascertain changes in the staining patterns. Furthermore, to identify the target layer on the cell wall, pull-down assays were performed. Mannan was identified as the major wall component able to bind the peptide. Finally, live imaging of macrophages incubated with Candida was carried out in order to assess any change in the phagocytic behaviour in presence of the peptide. Identifying the molecular target of EntV in regard to the anti-virulence mechanisms of C. albicans is an important step in its further development as a therapeutic addition to the classical antifungal agents.
-
-
-
Candida albicans cell wall mannosidases, Dfg5 and Dcw1, regulate chitin synthesis
In Candida albicans chitin synthesis is important for cell wall integrity and may also have a role in emergence of drug-resistance. Our past studies showed that cell wall mannosidases, Dfg5 and Dcw1, regulate HOG MAPK signaling. In this study, we investigated how Dfg5 and Dcw1 regulate chitin synthesis by affecting HOG, PKC and Calcium-Calcineurin signaling pathways. DFG5 and DCW1 heterologous mutants (ES1 & ES195) and a conditional mutant (ES195+methionine/cysteine) were utilized. WT SC5314 served as negative control and Hog1 knock-out mutant as positive control. Fluorescence microscopy of calcofluor white (CFW) stained mutant and control strains was performed to observe chitin accumulation. Quantitative PCR analysis was performed to measure the relative expression of chitin synthases CHS1, CHS2, CHS3 and CHS8. Incubation with chitinase was done to determine cell separation using light microscopy and scanning electron microscopy (SEM) analysis. Fluorescence microscopy showed significantly increased chitin accumulation in the mutants as compared to wild type. Chitin accumulation was observed mainly at the budding sites indicating a cause for defective cell separation phenotype. Incubation with chitinase led to cell separation in the mutants. CHS2, CHS3 and CHS8 expression was observed to be significantly upregulated in the conditional mutant and HOG1 mutant as compared to the wild type. This upregulation was also observed when the cell wall integrity PKC pathway was activated. However, activation of the Calcium-calcineurin pathway downregulated chitin synthase expression in the mutants. Our data indicates that Dfg5 and Dcw1 regulate expression of chitin synthases via HOG MAPK, PKC and Calcium-calcineurin signaling pathways.
-
-
-
Liposomes functionalized with fungi-targeting peptide demonstrate increased interaction with Candida albicans
More LessCandida albicans infections can be challenging to treat, as current antifungal drugs exhibit poor water solubility and host toxicity. To overcome these issues, new methods of drug delivery are needed. Liposomes have been shown to be an effective method for administrating antifungals and can increase bioavailability and solubility while decreasing toxicity. However, existing antifungal liposomal formulations lack infection specificity. For example, AmBisome, a liposomal formulation of amphotericin B, relies on passive accumulation to infection sites. We have developed antifungal liposomes that display fungi-targeting moieties to promote interaction with Candida;we predict that these formulations can increase fungal eradication and decrease off-site toxicity. Here, the C. albicans-targeting peptide P-113Q2.10 (AQRHHGYKRQFH), a derivative of the antifungal peptide histatin 5, was incorporated into liposomes via conjugation to palmitic acid (PA). PA-P-113Q2.10 conjugates were synthesized using solid phase peptide synthesis, confirmed by liquid-chromatography-mass spectrometry. Liposomes composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and cholesterol with 1% w/w PA-P-113Q2.10 were formed via thin film-hydration and extrusion, yielding ∼100 nm liposomes with a polydispersity index of ∼0.1. Flow cytometry demonstrated that interaction with C. albicans SC5314 was enhanced for P-113Q2.10 liposomes, increasing from ∼60% in cells incubated with liposomes lacking peptide to ∼79%. These liposomes preferentially interact with C. albicans compared to NIH 3T3 murine fibroblasts; on average, only ∼15% of fibroblasts incubated with liposomes (with and without peptide) showed positive liposome interaction. This liposome formulation has the potential to serve as an antifungal delivery platform that selectively targets C. albicans cells for increased efficacy in treatment of fungal infections.
-
-
-
Candida auris gene expression: modulation upon caspofungin treatment
More LessCandida auris has emerged as a serious worldwide threat by causing invasive infections in humans that are frequently resistant to one or more conventional antifungal medications, resulting in high mortality rates. Against this backdrop, health warnings around the world have focused efforts on understanding C. auris fungal biology and effective treatment approaches to combat this fungus. To date, there is little information about C. auris gene expression regulation in response to antifungal treatment. Our integrated analyses focused on the comparative transcriptomics of C. auris in the presence and absence of caspofungin as well as a detailed analysis of the yeast's extracellular vesicle (EV)-RNA composition. The results showed that genes coding oxidative stress response, ribosomal proteins, cell wall, and cell cycle were significantly up-regulated in the presence of caspofungin, whereas transcriptional regulators and proteins related to nucleus were down-regulated. The mRNAs in the EVswere associated with the stress responses induced by caspofungin and the ncRNA content of the EVs shifted during caspofungin treatment. Altogether, the results provide further insights into the fungal response to caspofungin and demonstrate that analyses of C. auris growth under antifungal stress can elucidate resistance and survival mechanisms of this fungus in response to medical therapy.
-
-
-
CO2 accelerates Candida albicans biofilm formation and reveals novel approaches to their inhibition on airway management devices
More LessC. albicans is the predominant human fungal pathogen worldwide and frequently colonises medical devices, such as voice prosthesis, as a biofilm. It is a dimorphic yeast that can switch between yeast and hyphal forms in response to environmental cues, a property that is essential during biofilm establishment and maturation. One such cue is elevation of CO2 levels, as observed in exhaled breath for example. However, despite the clear medical relevance the effects of high CO2 levels on C. albicans biofilm growth has not been investigated to date. Here, we show that 5% CO2 significantly enhances each stage of the C. albicans biofilm forming process; from attachment through maturation to dispersion, via stimulation of the Ras/cAMP/PKA signalling pathway. Transcriptome analysis of biofilm formation under elevated CO2 conditions revealed the activation of key biofilm formation pathways governed by the central biofilm regulators Efg1, Brg1, Bcr1 and Ndt80. Biofilms grown in under elevated CO2 conditions also exhibit increases in azole resistance, tolerance to nutritional immunity and enhanced glucose uptake capabilities. We thus characterise the mechanisms by which elevated CO2 promote C. albicans biofilm formation. We also investigate the possibility of re-purposing drugs that can target the CO2 activated metabolic enhancements observed in C. albicans biofilms. Using this approach we can significantly reduce multi-species biofilm formation in a high CO2 environment and demonstrate a significant extension of the lifespan of voice prostheses in a patient trial. Our research demonstrates a bench to bedside approach to tackle Candida albicans biofilm formation.
-
-
-
Investigation of the zinc uptake system of the human fungal pathogen Candida parapsilosis
More LessCandida parapsilosis is the second or third most commonly isolated Candida species from blood cultures and is frequently associated with infections in neonatal intensive care units. Candida species have several virulence factors enabling them to adapt to host environmental conditions and cause infections. These factors include adhesion, biofilm formation, and secretion of hydrolytic enzymes, such as acidic proteinases and lipases. Candida species also obtain heavy metal ions from their environment, such as zinc. Zinc is a cofactor of several proteins and a vital element in cellular mechanisms of the fungi. On the one hand, the host niche represents a zinc-limited environment, that indirectly inhibits microbial growth. In order to survive in such an environment, these pathogens have evolved a zinc transport system that allows them to access bound zinc ions during infection. On the other hand, high zinc ion concentration within the host can also be toxic to microbes e.g. in the phagosomes of Mycobacterium tuberculosis infected macrophages. In case of C. albicans, zinc acquisition processes are intensively studied, but we lack information of the zinc uptake, transfer and homeostasis mechanisms in C. parapsilosis. Here, predicted potential zinc transporters in C. parapsilosis using in silico analyses, generated homozygous knock out mutants and performed their phenotypical characterization by exposing them to various types of stressors and zinc limiting conditions. Furthermore, we analyzed their virulence traits by examining kinetics of fungal cell uptake by macrophages, their killing efficiency and also investigated zinc ion levels in the phagolysosome during in vitro infections
-
-
-
Genetic analysis of sirtuin deacetylases in hyphal growth of Candida albicans
More LessCandida albicans is a major human fungal pathogen that encounters varied host environments during infection. In response to environmental cues, C. albicans switches between ovoid yeast and elongated hyphal growth forms, and this morphological plasticity contributes to virulence. Environmental changes that alter the cell’s metabolic state could be sensed by sirtuins, which are NAD+-dependent deacetylases. Here we studied the roles of three sirtuin deacetylases, Sir2, Hst1, and Hst2, in hyphal growth of C. albicans. We made single, double, and triple sirtuin knockout strains and tested their ability to switch from yeast to hyphae. We found that true hyphae formation was significantly reduced by the deletion of SIR2 but not HST1 or HST2. Moreover, the expression of hyphal-specific genes HWP1, ALS3, and ECE1 decreased in the sir2Δ/Δ mutant compared to wild-type. This regulation of hyphae formation was dependent on the deacetylase activity of Sir2, as a point mutant lacking deacetylase activity had a similar defect in hyphae formation as the sir2Δ/Δ mutant. Finally, we found that Sir2 and Hst1 were localized to the nucleus, with Sir2 specifically focused in the nucleolus. This nuclear localization suggests a role for Sir2 and Hst1 in regulating gene expression. In contrast, Hst2 was localized to the cytoplasm. In conclusion, our results suggest that Sir2 plays a critical and non-redundant role in hyphal growth of C. albicans.
-
-
-
Genotypic and phenotypic portrait of Candida albicans clinical isolates colonizing the airways of patients with cystic fibrosis
Candida albicans colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, and contributes to disease severity. We serially recovered 160 C. albicans clinical isolates over a period of 30 months from the sputum of 23 pediatric and 2 adult antifungal-naive CF patients at Children’s Hospital Tunis and characterized the genotype and phenotype of a subset of strains using multilocus sequence typing (MLST) and growth assays on multiple stress-, filamentous growth- and biofilm-inducing media. Out of 16 patients regularly sampled for at least 9 months, 8 and 4 were chronically and transiently colonized with C. albicans, respectively. MLST analyses of 56 strains originating from 15 patients indicated that each patient was colonized with a single strain, while 8 patients (53%) carried isolates from clade 4 known to be enriched with strains from Middle East-Africa. A subset of these isolates with the same sequence type and colonizing 3 unrelated patients displayed altered susceptibility to cell wall-perturbing agents, suggesting changes in cell wall structure/function during growth in the CF lung. We also observed differential ability to filament and/or form biofilms in a set of identical isolates from clade 10 sampled over a period of 9 months in a pediatric CF patient, suggesting alterations in phenotypes associated with virulence. Our findings will rely on future whole-genome sequencing analyses to identify polymorphisms that could explain the emergence of new traits in C. albicans strains thriving in the CF host environment.
-
-
-
Investigation of the MFS drug transporter family in Candida parapsilosis using CRISPR-Cas9
More LessThe function of specific transporters is a key feature underlying drug resistance in Candida species. Drug transporters fall into two main classes – ATP-binding cassette (ABC) transporters, and the major facilitator superfamily (MFS) transporters. Some members of the drug/H (+) antiporter (DHA1) of the MFS superfamily have been shown to function as multidrug transporters. We targeted 16 genes belonging to five families that compose one branch of the DHA1 transporter group. These include MDR1/FLR1, associated with multidrug resistance in C. albicans (3 members); TPO4, associated with polyamine transport (1 member); NAG3/4, associated with transport of N-acetyl glucosamine (2 members); TPO2/3, associated with polyamine transport (1 member); and TPO1/FLU1, possibly associated with fluconazole resistance (9 members). We used CRISPR-Ca9 based gene editing to explore the function of of the five families in C. parapsilosis.
All 16 members were individually disrupted by introducing stop codons in the first third of the open reading frames (editing), or by deleting the whole gene. In addition, members of each family were disrupted together, including all 9 members of the TPO1/FLU1 family. CPAR2_603010, CPAR2_207540, and CPAR2_301760 all belonged to the MDR1 family. Editing CPAR2_603010 conferred sensitivity to fluconazole and voriconazole, though disrupting the other two genes had no effect. The azole sensitivity of the CPAR2_603010 edited strain was reverted by introducing the wild type sequence. Disrupting CPAR2_603010 or CPAR2_301760 individually did not affect sensitivity to 4-nitroquinoline 1-oxide. However, the double disruptant was sensitive. Disrupting CPAR2_300760, a member of the TPO1/FLU1 family, resulted in sensitivity to mycophenolic acid. Whole genome sequencing analysis of a strain in which all nine TPO1 genes were disrupted revealed that few off-target effects introduced by the CRISPR-Cas9 system, as few unexpected changes were found after eight rounds of transformation.
-
-
-
Short peptides derived from EntV inhibit virulence and biofilm formation in Candida albicans
More LessCandida albicans exists as a member of the commensal flora of the skin and gut where many complex polymicrobial interactions occur with genera such as Pseudomonas, Staphylococcus, and Streptococcus. Some of these interactions potentiate or inhibit virulence. The bacterial gastrointestinal commensal speciesEnterococcus faecalisproduces a small peptide, EntV, that modulates C. albicans virulence. The active 68 amino acid EntV peptide inhibits biofilm formationin vitro; biofilm-related infections are difficult to treat with current therapeutics. EntV also attenuates fungal virulence in a Caenorhabditis elegansinfection model and a murine oral candidiasis model. We sought to identify the regions of EntV responsible for the anti-fungal activity, and based on structural information, we hypothesized that it could be localized to a single helix of the mature peptide. In this study, we report that smaller peptides derived from this helix ranging from 12 to 16 amino acids have equal to improved efficacy in inhibiting C. albicans virulence andbiofilm formation. These smaller peptides attenuate virulence in the C. elegans infection model, inhibit initial adhesion to abiotic surfaces, and reduce the size of mature biofilms measured by confocal microscopy. Further trimming of these peptides to fewer than 11 amino acids reduces and eventually eliminates activity. These data indicate that EntV-derived peptides warrant further investigation as potential non-fungicidal additives to medical devices and antifungal therapeutics.
-
-
-
Complex sphingolipids: Vital determinants of drug susceptibility, membrane integrity and pathogenesis of Candida glabrata
Complex Sphingolipids (SLs) are unique to fungi, which apart from being novel drug targets, also appear to act as molecular signals, in diverse biological processes. In this study, we have specifically blocked the key synthesis step of SLs metabolism by disruption of the uncharacterized CgIPT1 gene, which based on homology with other Candida spp., predicted to mediate the conversion of MIPC to M(IP)2C. We followed fusion based PCR homologous recombination method for IPT1 deletion by using dominant markerNAT1. The knockout was selected on a nourseothricin drug plate and confirmed by gene specific PCR and by checking M(IP)2C levels. We observed that the specific accumulation of MIPC or lack of M(IP)2C in C. glabrata displayed increased susceptibility to both imidazole’s (ketoconazole, miconazole and clotrimazole) and triazoles (fluconazole, itraconazole and posaconazole). RNA Sequencing of Cgipt1Δcells revealed no major impact on of expression levels of common MDR determinants albeit a distinct imbalances in expression of lipid homeostasis genes was evident. The Fluorescence Recovery after Photobleaching (FRAP) experiments confirmed that plasma membrane in Cgipt1Δ cells display a reduction in micro-viscosity leading to increase in drug diffusion and susceptibility of Cgipt1Δcells. Interestingly, the Cgipt1Δ also exhibit attenuated virulence in a murine model. Together, our data confirms the relevance of M(IP)2C in governing drug susceptibility and virulence in C. glabrata.
-
-
-
Precise editing using CRISPR-Cas9 to explore the contribution of clinically-derived mutations to antifungal resistance in the pathogenic yeast Candida parapsilosis
More LessIntroductionCandida parapsilosis is both a commensal/saprophytic yeast of the human skin and an opportunistic pathogen which can be responsible for life-threatening infections. The increasing reports of clonal outbreaks involving azole-resistant C. parapsilosis in the clinical setting is worrisome and urges for a better understanding of antifungal resistance in this species. Previous studies have identified mutations in key genes which can explain acquired fluconazole resistance. Reverse genetics approaches are now warranted to confirm their involvement and to determine whether they can affect other clinically-licensed antifungals. Here, we used a CRISPR-Cas9 technique to study the relative contributions of clinically-derived mutations to antifungal resistance and provide answers to these questions.
Materials and MethodsSix clinically-derived mutations were selected (ERG11Y132F, ERG11K143R,ERG11R398I, TAC1G650E, MRR1G583R, ERG3G111R) to be engineered in two C. parapsilosis fluconazole-susceptible backgrounds (ATCC22019, STZ5) using a previously described CRISPR-Cas9 method. In vitro susceptibility of the transformants to fluconazole, voriconazole, posaconazole, isavuconazole and micafungin was determined by Etest®.
Results/DiscussionThe impact on fluconazole susceptibility was highly variable depending on the residue/gene involved, but roughly similar between the two genetic backgrounds. All but two(ERG11R398I, ERG3G111R) conferred fluconazole resistance, though the highest MIC increase was observed for MRR1G583R (≥650 fold). As expected in a diploid species, we noted an impact of allelic dosage. Some kind of cross-resistance to the other azoles was noted from some mutations, although the impact was lower for posaconazole and isavuconazole, except for MRR1G583R which led to multi-azole resistance. Finally, ERG3G111R increased tolerance to both azoles and echinocandins.
-
-
-
Conducting genetic interaction analysis with CRISPR-Cas9-based strategies in Candida albicans
More LessCandida albicans is an opportunistic fungal pathogen found in the oral mucosa, the gut, the vaginal mucosa, and humans' skin. While C. albicans can cause superficial infections, severe invasive infections can occur in immunocompromised individuals. Understanding the survival mechanisms and pathogenesis of C. albicans is critical for novel antifungal drug discovery. Determining the relationships between different genes can create a genetic interaction map, which can identify complementary gene sets, central to C. albicans survival, as potential drug targets in combination therapy. A genetic approach using the CRISPR-Cas9-based genome editing platform will focus on genetic interaction analysis of C. albicans stress response genes. The ultimate goal is to create a stress response gene deletion library to study its pathogen survival role. This library of single and double stress response gene mutants will be screened under diverse growth conditions to assess their relative fitness. Genetic interaction analysis will help map out epistatic interactions between fungal genes involved in growth, survival, and pathogenesis and uncover putative targets for combination antifungal therapy based on negative or synthetic lethal genetic interactions.
-
Volumes and issues
Most Read This Month
