1887

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated CRISPR-associated sequence (CAS) proteins constitute a novel antiviral defence system that is widespread in prokaryotes. Repeats are separated by spacers, some of them homologous to sequences in mobile genetic elements. Although the whole process involved remains uncharacterized, it is known that new spacers are incorporated into CRISPR loci of the host during a phage challenge, conferring specific resistance against the virus. Moreover, it has been demonstrated that such interference is based on small RNAs carrying a spacer. These RNAs would guide the defence apparatus to foreign molecules carrying sequences that match the spacers. Despite this essential role, the spacer uptake mechanism has not been addressed. A first step forward came from the detection of motifs associated with spacer precursors (proto-spacers) of , revealing a specific recognition of donor sequences in this species. Here we show that the conservation of proto-spacer adjacent motifs (PAMs) is a common theme for the most diverse CRISPR systems. The PAM sequence depends on the CRISPR-CAS variant, implying that there is a CRISPR-type-specific (motif-directed) choice of the spacers, which subsequently determines the interference target. PAMs also direct the orientation of spacers in the repeat arrays. Remarkably, observations based on such polarity argue against a recognition of the spacer precursors on transcript RNA molecules as a general rule.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023960-0
2009-03-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/733.html?itemId=/content/journal/micro/10.1099/mic.0.023960-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P.. 2007; CRISPR provides acquired resistance against viruses in prokaryotes. Science315:1709–1712
    [Google Scholar]
  3. Beloglazova N., Brown G., Zimmerman M. D., Proudfoot M., Makarova K. S., Kudritska M., Kochinyan S., Wang S., Chruszcz M.. other authors 2008; A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem283:20361–20371
    [Google Scholar]
  4. Bolotin A., Quinquis B., Sorokin A., Ehrlich S. D.. 2005; Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology151:2551–2561
    [Google Scholar]
  5. Brennecke J., Aravin A. A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G. J.. 2007; Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128:1089–1103
    [Google Scholar]
  6. Brouns S. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J., Snijders A. P., Dickman M. J., Makarova K. S., Koonin E. V., van der Oost J.. 2008; Small CRISPR RNAs guide antiviral defense in prokaryotes. Science321:960–964
    [Google Scholar]
  7. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. 2004; WebLogo: a sequence logo generator. Genome Res14:1188–1190
    [Google Scholar]
  8. DeBoy R. T., Mongodin E. F., Emerson J. B., Nelson K. E.. 2006; Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences. J Bacteriol188:2364–2374
    [Google Scholar]
  9. Deveau H., Barrangou R., Garneau J. E., Labonté J., Fremaux C., Boyaval P., Romero D. A., Horvath P., Moineau S.. 2008; Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol190:1390–1400
    [Google Scholar]
  10. Ebihara A., Yao M., Masui R., Tanaka I., Yokoyama S., Kuramitsu S.. 2006; Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci15:1494–1499
    [Google Scholar]
  11. Haft D. H., Selengut J., Mongodin E. F., Nelson K. E.. 2005; A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol1:e60
    [Google Scholar]
  12. Horvath P., Romero D. A., Coûté-Monvoisin A. C., Richards M., Deveau H., Moineau S., Boyaval P., Fremaux C., Barrangou R.. 2008; Diversity, activity and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol190:1401–1412
    [Google Scholar]
  13. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A.. 1987; Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol169:5429–5433
    [Google Scholar]
  14. Jansen R., Embden J. D., Gaastra W., Schouls L. M.. 2002; Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol43:1565–1575
    [Google Scholar]
  15. Kawaji H., Hayashizaki Y.. 2008; Exploration of small RNAs. PLoS Genet4:e22
    [Google Scholar]
  16. Kojima K. K., Kanehisa M.. 2008; Systematic survey for novel types of prokaryotic retroelements based on gene neighbourhood and protein architecture. Mol Biol Evol25:1395–1404
    [Google Scholar]
  17. Kunin V., Sorek R., Hugenholtz P.. 2007; Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol8:R61
    [Google Scholar]
  18. Lillestøl R. K., Redder P., Garrett R. A., Brügger K.. 2006; A putative viral defence mechanism in archaeal cells. Archaea2:59–72
    [Google Scholar]
  19. Makarova K. S., Aravind L., Grishin N. V., Rogozin I. B., Koonin E. V.. 2002; A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res30:482–496
    [Google Scholar]
  20. Makarova K. S., Grishin N. V., Shabalina S. A., Wolf Y. I., Koonin E. V.. 2006; A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct1: 7
    [Google Scholar]
  21. Mandin P., Repoila F., Vergassola M., Geissmann T., Cossart P.. 2007; Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res35:962–974
    [Google Scholar]
  22. Mojica F. J. M., Ferrer C., Juez G., Rodríguez-Valera F.. 1995; Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol17:85–93
    [Google Scholar]
  23. Mojica F. J. M., Díez-Villaseñor C., Soria E., Juez G.. 2000; Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol36:244–246
    [Google Scholar]
  24. Mojica F. J. M., Díez-Villaseñor C., García-Martínez J., Soria E.. 2005; Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol60:174–182
    [Google Scholar]
  25. Ochman H., Selander R. K.. 1984; Standard reference strains of Escherichia coli from natural populations. J Bacteriol157:690–693
    [Google Scholar]
  26. Pourcel C., Salvignol G., Vergnaud G.. 2005; CRISPR elements in Y ersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology151:653–663
    [Google Scholar]
  27. Riehle M. M., Bennett A. F., Long A. D.. 2001; Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci U S A98:525–530
    [Google Scholar]
  28. Schneider T. D., Stephens R. M.. 1990; Sequence logos: a new way to display consensus sequences. Nucleic Acids Res18:6097–6100
    [Google Scholar]
  29. Sorek R., Kunin V., Hugenholtz P.. 2008; CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol6:181–186
    [Google Scholar]
  30. Tang T. H., Bachellerie J. P., Rozhdestvensky T., Bortolin M. L., Huber H., Drungowski M., Elge T., Brosius J., Hüttenhofer A.. 2002; Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A99:7536–7541
    [Google Scholar]
  31. Tang T. H., Polacek N., Zywicki M., Huber H., Brügger K., Garrett R., Bachellerie J. P., Hüttenhofer A.. 2005; Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol55:469–481
    [Google Scholar]
  32. Willkomm D. K., Minnerup J., Hüttenhofer A., Hartmann R. K.. 2005; Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res33:1949–1960
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023960-0
Loading
/content/journal/micro/10.1099/mic.0.023960-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error