1887

Abstract

There is increasing evidence that may colonize the intestinal tract, especially among hospitalized patients. As has been found to be associated with certain gastrointestinal diseases, it has become important to study whether this bacterium can colonize the intestinal tract and if so, whether it is possible to prevent colonization. Adhesion is the first step in colonization; this study shows that adheres to mucus from resected human intestinal tissue. Certain lactic acid bacteria (LAB), mainly commercial probiotics, were able to reduce adhesion and viability of adherent . In displacement assays the amount of adherent in human intestinal mucus was reduced 39–44 % by GG, subsp. and subsp. . Moreover, adherent , and reduced viability of adherent by 27–36 %, depending on the strain, after 2 h incubation. This was probably due to the production of organic acids and hydrogen peroxide and possibly in the case of to the production of reuterin. This study shows for the first time that can adhere to human intestinal mucus and adherent bacteria can be displaced and killed by certain LAB strains via production of antimicrobial substances.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28522-0
2006-06-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1819.html?itemId=/content/journal/micro/10.1099/mic.0.28522-0&mimeType=html&fmt=ahah

References

  1. Ackermann, G., Thomalla, S., Ackermann, F., Schaumann, R., Rodloff, A. C. & Ruf, B. R. ( 2005; ). Prevalence and characteristics of bacteria and host factors in an outbreak situation of antibiotic-associated diarrhoea. J Med Microbiol 54, 149–153.[CrossRef]
    [Google Scholar]
  2. Arques, J. L., Fernandez, J., Gaya, P., Nunez, M., Rodriguez, E. & Medina, M. ( 2004; ). Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int J Food Microbiol 95, 225–229.[CrossRef]
    [Google Scholar]
  3. Beard, S. J., Salisbury, V., Lewis, R. J., Sharpe, J. A. & MacGowan, A. P. ( 2002; ). Expression of lux genes in a clinical isolate of Streptococcus pneumoniae: using bioluminescence to monitor gemifloxacin activity. Antimicrob Agents Chemother 46, 538–542.[CrossRef]
    [Google Scholar]
  4. Bjorksten, B., Sepp, E., Julge, K., Voor, T. & Mikelsaar, M. ( 2001; ). Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108, 516–520.[CrossRef]
    [Google Scholar]
  5. Boyce, J. M. & Havill, N. L. ( 2005; ). Nosocomial antibiotic-associated diarrhea associated with enterotoxin-producing strains of methicillin-resistant Staphylococcus aureus. Am J Gastroenterol 100, 1828–1834.[CrossRef]
    [Google Scholar]
  6. Cespedes, C., Said-Salim, B., Miller, M., Lo, S. H., Kreiswirth, B. N., Gordon, R. J., Vavagiakis, P., Klein, R. S. & Lowy, F. D. ( 2005; ). The clonality of Staphylococcus aureus nasal carriage. J Infect Dis 191, 444–452.[CrossRef]
    [Google Scholar]
  7. Collins, M. D. & Gibson, G. R. ( 1999; ). Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69, 1052S–1057S.
    [Google Scholar]
  8. Donskey, C. J. ( 2004; ). The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39, 219–226.[CrossRef]
    [Google Scholar]
  9. Dupeyron, C., Campillo, S. B., Mangeney, N., Richardet, J. P. & Leluan, G. ( 2001; ). Carriage of Staphylococcus aureus and of gram-negative bacilli resistant to third-generation cephalosporins in cirrhotic patients: a prospective assessment of hospital-acquired infections. Infect Control Hosp Epidemiol 22, 427–432.[CrossRef]
    [Google Scholar]
  10. Gorbach, S. L., Chang, T. W. & Goldin, B. ( 1987; ). Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2, 1519.
    [Google Scholar]
  11. Gries, D. M., Pultz, N. J. & Donskey, C. J. ( 2005; ). Growth in cecal mucus facilitates colonization of the mouse intestinal tract by methicillin-resistant Staphylococcus aureus. J Infect Dis 192, 1621–1627.[CrossRef]
    [Google Scholar]
  12. Kielian, T., Cheung, A. & Hickey, W. F. ( 2001; ). Diminished virulence of an alpha-toxin mutant of Staphylococcus aureus in experimental brain abscesses. Infect Immun 69, 6902–6911.[CrossRef]
    [Google Scholar]
  13. Kreiswirth, B. N., Lofdahl, S., Betley, M. J., O'Reilly, M., Schlievert, P. M., Bergdoll, M. S. & Novick, R. P. ( 1983; ). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712.[CrossRef]
    [Google Scholar]
  14. Lee, Y. K., Lim, C. Y., Teng, W. L., Ouwehand, A. C., Tuomola, E. M. & Salminen, S. ( 2000; ). Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl Environ Microbiol 66, 3692–3697.[CrossRef]
    [Google Scholar]
  15. Lesuffleur, T., Barbat, A., Dussaulx, E. & Zweibaum, A. ( 1990; ). Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50, 6334–6343.
    [Google Scholar]
  16. Lesuffleur, T., Porchet, N., Aubert, J. P., Swallow, D., Gum, J. R., Kim, Y. S., Real, F. X. & Zweibaum, A. ( 1993; ). Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci 106, 771–783.
    [Google Scholar]
  17. Lindberg, E., Nowrouzian, F., Adlerberth, I. & Wold, A. E. ( 2000; ). Long-time persistence of superantigen-producing Staphylococcus aureus strains in the intestinal microflora of healthy infants. Pediatr Res 48, 741–747.[CrossRef]
    [Google Scholar]
  18. Lindberg, E., Adlerberth, I., Hesselmar, B., Saalman, R., Strannegard, I. L., Aberg, N. & Wold, A. E. ( 2004; ). High rate of transfer of Staphylococcus aureus from parental skin to infant gut flora. J Clin Microbiol 42, 530–534.[CrossRef]
    [Google Scholar]
  19. Lowy, F. D. ( 1998; ). Staphylococcus aureus infections. N Engl J Med 339, 520–532.[CrossRef]
    [Google Scholar]
  20. Lu, J., Wang, A., Ansari, S., Hershberg, R. M. & McKay, D. M. ( 2003; ). Colonic bacterial superantigens evoke an inflammatory response and exaggerate disease in mice recovering from colitis. Gastroenterology 125, 1785–1795.[CrossRef]
    [Google Scholar]
  21. Moncada, D. M., Kammanadiminti, S. J. & Chadee, K. ( 2003; ). Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol 19, 305–311.[CrossRef]
    [Google Scholar]
  22. Ouwehand, A. C., Salminen, S., Tolkko, S., Roberts, P., Ovaska, J. & Salminen, E. ( 2002; ). Resected human colonic tissue: new model for characterizing adhesion of lactic acid bacteria. Clin Diagn Lab Immunol 9, 184–186.
    [Google Scholar]
  23. Ouwehand, A. C., Salminen, S., Roberts, P. J., Ovaska, J. & Salminen, E. ( 2003; ). Disease-dependent adhesion of lactic acid bacteria to the human intestinal mucosa. Clin Diagn Lab Immunol 10, 643–646.
    [Google Scholar]
  24. Ray, A. J., Pultz, N. J., Bhalla, A., Aron, D. C. & Donskey, C. J. ( 2003; ). Coexistence of vancomycin-resistant enterococci and Staphylococcus aureus in the intestinal tracts of hospitalized patients. Clin Infect Dis 37, 875–881.[CrossRef]
    [Google Scholar]
  25. Rimland, D. & Roberson, B. ( 1986; ). Gastrointestinal carriage of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 24, 137–138.
    [Google Scholar]
  26. Rocchetta, H. L., Boylan, C. J., Foley, J. W. & 7 other authors ( 2001; ). Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother 45, 129–137.[CrossRef]
    [Google Scholar]
  27. Ryan, C. S. & Kleinberg, I. ( 1995; ). Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch Oral Biol 40, 753–763.[CrossRef]
    [Google Scholar]
  28. Saavedra, J. M., Bauman, N. A., Oung, I., Perman, J. A. & Yolken, R. H. ( 1994; ). Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344, 1046–1049.[CrossRef]
    [Google Scholar]
  29. Salyers, A. A., Gupta, A. & Wang, Y. ( 2004; ). Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12, 412–416.[CrossRef]
    [Google Scholar]
  30. Shuter, J., Hatcher, V. B. & Lowy, F. D. ( 1996; ). Staphylococcus aureus binding to human nasal mucin. Infect Immun 64, 310–318.
    [Google Scholar]
  31. Squier, C., Rihs, J. D., Risa, K. J., Sagnimeni, A., Wagener, M. M., Stout, J., Muder, R. R. & Singh, N. ( 2002; ). Staphylococcus aureus rectal carriage and its association with infections in patients in a surgical intensive care unit and a liver transplant unit. Infect Control Hosp Epidemiol 23, 495–501.[CrossRef]
    [Google Scholar]
  32. Talarico, T. L., Casas, I. A., Chung, T. C. & Dobrogosz, W. J. ( 1988; ). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32, 1854–1858.[CrossRef]
    [Google Scholar]
  33. Uehara, Y., Kikuchi, K., Nakamura, T., Nakama, H., Agematsu, K., Kawakami, Y., Maruchi, N. & Totsuka, K. ( 2001; ). Inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns by viridans group streptococci. Clin Infect Dis 32, 1399–1407.[CrossRef]
    [Google Scholar]
  34. Uehara, Y., Kikuchi, K., Nakamura, T., Nakama, H., Agematsu, K., Kawakami, Y., Maruchi, N. & Totsuka, K. ( 2001; ). H2O2 produced by viridans group streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns. Clin Infect Dis 32, 1408–1413.[CrossRef]
    [Google Scholar]
  35. Unge, A., Tombolini, R., Molbak, L. & Jansson, J. K. ( 1999; ). Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 65, 813–821.
    [Google Scholar]
  36. Vanderhoof, J. A., Whitney, D. B., Antonson, D. L., Hanner, T. L., Lupo, J. V. & Young, R. J. ( 1999; ). Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J Pediatr 135, 564–568.[CrossRef]
    [Google Scholar]
  37. van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk, L.-v. ( 1971; ). Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg 69, 405–411.[CrossRef]
    [Google Scholar]
  38. Vesterlund, S., Paltta, J., Laukova, A., Karp, M. & Ouwehand, A. C. ( 2004; ). Rapid screening method for the detection of antimicrobial substances. J Microbiol Methods 57, 23–31.[CrossRef]
    [Google Scholar]
  39. Vesterlund, S., Paltta, J., Karp, M. & Ouwehand, A. C. ( 2005; ). Measurement of bacterial adhesion – in vitro evaluation of different methods. J Microbiol Methods 60, 225–233.[CrossRef]
    [Google Scholar]
  40. WHO ( 2001; ). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Córdoba, Argentina: World Health Organization.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28522-0
Loading
/content/journal/micro/10.1099/mic.0.28522-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error