1887

Abstract

This study investigated the subcellular localization of key enzymes of the glyoxylate cycle, i.e. isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (EC 2.3.3.9), that function constitutively in coordination with oxalate biosynthesis of glucose-grown . The ICL purified previously from is termed FPICL1. Subcellular fractionation analysis of the cell homogenate by the sucrose density-gradient method showed that both key enzymes were present in peroxisomes, whereas acetyl-CoA synthase (EC 6.2.1.1) and oxalate-producing oxaloacetate acetylhydrolase (EC 3.7.1.1) were cytosolic. The peroxisomal localization of FPICL1 was further confirmed by electron microscopic and immunocytochemical analysis with anti-FPICL1 antibody. In addition, the peroxisomal target signal, composed of SKL at the C terminus of the cDNA encoding FPICL1, was found, which also suggests that FPICL1 is peroxisomal. Accordingly, it is postulated that transportation of succinate from peroxisomes to mitochondria, and vice versa, for the transportation of isocitrate or citrate, occurs in glucose-grown for the constitutive metabolic coordination of the TCA and glyoxylate cycles with oxalate biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28702-0
2006-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1857.html?itemId=/content/journal/micro/10.1099/mic.0.28702-0&mimeType=html&fmt=ahah

References

  1. Aebi, H. E. ( 1983; ). Catalase. In Methods of Enzymatic Analysis, 3rd edn, pp. 273–285. Edited by H. U. Bergmeyer. Weinheim: Verlag Chemie.
  2. Amor, C., Domínguez, A. I., de Lucas, J. R. & Laborda, F. ( 2000; ). The catabolite inactivation of Aspergillus nidulans, isocitrate lyase occurs by specific autophagy of peroxisomes. Arch Microbiol 174, 59–66.[CrossRef]
    [Google Scholar]
  3. Atomi, H., Ueda, M., Hikida, M., Hishida, T., Teranishi, Y. & Tanaka, A. ( 1990; ). Peroxisomal isocitrate lyase of the n-alkane-assimilating yeast Candida tropicalis: gene analysis and characterization. J Biochem 107, 262–266.
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Campbell, J. J. R., Smith, R. A. & Eagles, B. A. ( 1953; ). A deviation from the conventional tricarboxylic acid cycle in Pseudomonas aeruginosa. Biochim Biophys Acta 11, 594.[CrossRef]
    [Google Scholar]
  6. Chaure, P. T., Casselton, L. A. & Connerton, I. F. ( 1997; ). Molecular analysis of the isocitrate lyase gene (acu-7) of the mushroom Coprinus cinereus. Gene 184, 185–187.[CrossRef]
    [Google Scholar]
  7. Chaves, R. S., Herrero, P., Ordiz, I., del Brio, M. A. & Moreno, F. ( 1997; ). Isocitrate lyase localisation in Saccharomyces cerevisiae cells. Gene 198, 165–169.[CrossRef]
    [Google Scholar]
  8. De Lucas, J. R., Valenciano, S., Laborda, F. & Turner, G. ( 1994; ). Glucose-induced inactivation of isocitrate lyase in Aspergillus nidulans. Arch Microbiol 162, 409–413.[CrossRef]
    [Google Scholar]
  9. Dijken, J. P. V., Beenhuis, M., Vermeulen, C. A. & Harder, W. ( 1975; ). Cytochemical localization of catalase activity in methanol-grown Hansenula polymorpha. Arch Microbiol 105, 261–267.[CrossRef]
    [Google Scholar]
  10. Dixon, G. H. & Kornberg, H. L. ( 1959; ). Assay method for key enzymes of the glyoxylate cycle. Biochem J 72, 3p.
    [Google Scholar]
  11. Dutton, M. V. & Evans, C. S. ( 1996; ). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42, 881–895.[CrossRef]
    [Google Scholar]
  12. Fahimi, H. D. & Baumgart, E. ( 1999; ). Current cytochemical techniques for the investigation of peroxisomes, a review. J Histochem Cytochem 47, 1219–1232.[CrossRef]
    [Google Scholar]
  13. Fernández, E., Moreno, F. & Rodicio, R. ( 1992; ). The ICL1 gene from Saccharomyces cerevisiae. Eur J Biochem 204, 983–990.[CrossRef]
    [Google Scholar]
  14. Flores, C.-L., Rodríguez, C., Petit, T. & Gancedo, C. ( 2000; ). Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24, 507–529.[CrossRef]
    [Google Scholar]
  15. Gainey, L. D. S., Connerton, I. F., Lewis, E. H., Turner, G. & Balance, D. J. ( 1992; ). Characterization of the glyoxysomal isocitrate lyase genes of Aspergillus nidulans (acuD) and Neurospora crassa (acu-3). Curr Genet 21, 43–47.
  16. Heather, M. S.-L. & Fairhurst, V. ( 1998; ). Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger. Microbiology 144, 1895–1900.[CrossRef]
    [Google Scholar]
  17. Herrero, P., Fernández, R. & Moreno, F. ( 1985; ). Differential sensitivities to glucose and galactose repression of gluconeogenic and respiratory enzymes. Arch Microbiol 143, 216–219.[CrossRef]
    [Google Scholar]
  18. Kionka, C. & Kunau, W. ( 1985; ). Inducible β-oxidation pathway in Neurospora crassa. J Bacteriol 161, 153–157.
    [Google Scholar]
  19. Kornberg, H. L. ( 1966; ). The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99, 1–11.
    [Google Scholar]
  20. Kornberg, H. L. & Krebs, H. A. ( 1957; ). Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179, 988–991.[CrossRef]
    [Google Scholar]
  21. Kornberg, H. L. & Madsen, N. B. ( 1957; ). Synthesis of C-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle. Biochim Biophys Acta 24, 651–653.[CrossRef]
    [Google Scholar]
  22. Labrou, N. E. & Clonis, Y. D. ( 1997; ). l-Malate dehydrogenase from Pseudomonas stutzeri: purification and characterization. Arch Biochem Biophys 337, 103–114.[CrossRef]
    [Google Scholar]
  23. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  24. Lee, J. G., Cho, S. P., Lee, H. S., Lee, C. H., Bae, K. S. & Maeng, P. J. ( 2000; ). Identification of a cryptic N-terminal signal in Saccharomyces cerevisiae peroxisomal citrate synthase that functions in both peroxisomal and mitochondrial targeting. J Biochem 128, 1059–1072.[CrossRef]
    [Google Scholar]
  25. Lenz, H., Wunderwald, P. & Eggerer, H. ( 1976; ). Partial purification and some properties of oxaloacetase from Aspergillus niger. Eur J Biochem 63, 225–236.
    [Google Scholar]
  26. López, M. L., Redruello, B., Valdes, E., Moreno, F., Heinisch, J. J. & Rodicio, R. ( 2004; ). Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation. Curr Genet 44, 305–316.[CrossRef]
    [Google Scholar]
  27. López-Boado, Y. S., Herrero, P., Ferández, T., Ferández, R. & Moreno, F. ( 1988; ). Glucose-stimulated phosphorylation of yeast isocitrate lyase in vivo. J Gen Microbiol 134, 2499–2505.
    [Google Scholar]
  28. Maeting, I., Scimdit, G., Sahm, H., Revuelta, J. L., Stierhof, Y. D. & Stahmann, K. P. ( 1999; ). Isocitrate lyase of Ashbya gossypii – transcriptional regulation and peroxisomal localization. FEBS Lett 444, 15–21.[CrossRef]
    [Google Scholar]
  29. Moore, D. & Ewaze, J. O. ( 1976; ). Activities of some enzymes involved in metabolism of carbohydrate during sporophore development in Coprinus cinereus. J Gen Microbiol 97, 313–322.[CrossRef]
    [Google Scholar]
  30. Munir, E., Yoon, J. J., Tokimatsu, T., Hattori, T. & Shimada, M. ( 2001a; ). New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid. J Wood Sci 47, 368–373.[CrossRef]
    [Google Scholar]
  31. Munir, E., Yoon, J. J., Tokimatsu, T., Hattori, T. & Shimada, M. ( 2001b; ). A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. Proc Natl Acad Sci U S A 98, 11126–11130.[CrossRef]
    [Google Scholar]
  32. Munir, E., Hattori, T. & Shimada, M. ( 2002; ). Purification and characterization of isocitrate lyase from the wood-destroying basidiomycete Fomitopsis palustris grown on glucose. Arch Biochem Biophys 399, 225–231.[CrossRef]
    [Google Scholar]
  33. Ono, K., Kondo, M., Osafune, T., Miyatake, K., Inui, H., Kitaoka, S., Nishimura, M. & Nakano, Y. ( 2003; ). Presence of glyoxylate cycle enzymes in the mitochondria of Euglena gracilis. J Eukaryot Microbiol 50, 92–96.[CrossRef]
    [Google Scholar]
  34. Ordiz, I., Herrero, P., Rodicio, R. & Moreno, F. ( 1996; ). Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by the cAMP-dependent protein kinase catalytic subunits Tpk1 and Tpk2. FEBS Lett 385, 43–46.[CrossRef]
    [Google Scholar]
  35. O'sullivan, J. & Casselton, P. J. ( 1973; ). The subcellular localization of glyoxylate cycle enzymes in Coprinus lagopus. J Gen Microbiol 75, 333–337.[CrossRef]
    [Google Scholar]
  36. Osumi, M., Katazawa, H. & Sato, S. ( 1978; ). Microbody-associated DNA in Candida tropicalis pk223 cells. FEBS Lett 90, 309–312.[CrossRef]
    [Google Scholar]
  37. Petrova, V. Y., Rasheva, T. V. & Kujumdzieva, A. V. ( 2002; ). Catalase enzyme in mitochondria of Saccharomyces cerevisiae. Electron J Biotechnol 5, 29–41.
    [Google Scholar]
  38. Ruijter, G. J. G., Van de Vondervoort, P. J. I. & Visser, J. ( 1999; ). Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145, 2569–2576.
    [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Schöler, A. & Schüller, H. J. ( 1993; ). Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae. Curr Genet 23, 375–381.[CrossRef]
    [Google Scholar]
  41. Schüller, H. J. ( 2003; ). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43, 139–160.
    [Google Scholar]
  42. Shimada, M., Akamatsu, Y., Tokimatsu, T., Mii, K. & Hattori, T. ( 1997; ). Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53, 103–113.[CrossRef]
    [Google Scholar]
  43. Spurr, A. R. ( 1969; ). A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef]
    [Google Scholar]
  44. Steffan, J. S. & McAlister-Henn, L. ( 1992; ). Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J Biol Chem 267, 24708–24715.
    [Google Scholar]
  45. Subramani, S. ( 1993; ). Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol 9, 445–478.[CrossRef]
    [Google Scholar]
  46. Tanaka, A. & Ueda, M. ( 1993; ). Assimilation of alkanes by yeasts – functions and biogenesis of peroxisomes. Mycol Res 97, 1025–1044.[CrossRef]
    [Google Scholar]
  47. Taylor, K. M., Kaplan, C. P., Gao, X. & Baker, A. ( 1996; ). Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae. Biochem J 319, 255–262.
    [Google Scholar]
  48. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  49. Titorenko, V. I., Smith, J. J., Szilard, R. K. & Rachubinski, R. A. ( 1998; ). Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J Cell Biol 142, 403–420.[CrossRef]
    [Google Scholar]
  50. Valenciano, S., De Lucas, J. R., Pedregosa, A., Monistrol, I. F. & Laborda, F. ( 1996; ). Induction of β-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch Microbiol 166, 336–341.[CrossRef]
    [Google Scholar]
  51. Valenciano, S., De Lucas, J. R., Van der Klei, I. & Veenhuis, M. & Laborda, F. ( 1998; ). Characterization of Aspergillus nidulans peroxisomes by immunoelectron microscopy. Arch Microbiol 170, 370–376.[CrossRef]
    [Google Scholar]
  52. Vanni, P., Giachetti, E., Pinzauti, G. & McFadden, B. A. ( 1990; ). Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comput Biochem Physiol B95, 431–458.
    [Google Scholar]
  53. Wong, D. T. O. & Aji, S. J. ( 1956; ). Conversion of acetate and glyoxylate to malate. J Am Chem Soc 78, 3230–3231.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28702-0
Loading
/content/journal/micro/10.1099/mic.0.28702-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error