- Volume 147, Issue 7, 2001
Volume 147, Issue 7, 2001
- Pathogenicity And Medical Microbiology
-
-
-
Mosaic structure of Shiga-toxin-2-encoding phages isolated from Escherichia coli O157:H7 indicates frequent gene exchange between lambdoid phage genomes
More LessShiga-toxin-2 (stx 2)-encoding bacteriophages were isolated from Norwegian Escherichia coli O157:H7 isolates of cattle and human origin. The phages were characterized by restriction enzyme analysis, hybridization with probes for toxin genes and selected phage DNA such as the P gene, integrase gene and IS1203, and by PCR studies and partial sequencing of selected DNA regions in the integrase to stx 2 region of the phages. The stx 2-phage-containing bacteria from which inducible phages were detected produced similar amounts of toxin, as shown by a Vero cell assay. The results indicate that the population of stx 2-carrying phages is heterogeneous, although the phages from epidemiologically linked E. coli O157:H7 isolates were similar. There appears to have been frequent recombination of stx 2 phages with other lambdoid phages.
-
-
-
-
Different adhesins for type IV collagen on Candida albicans: identification of a lectin-like adhesin recognizing the 7S(IV) domain
More LessAdherence of the opportunistic pathogen Candida albicans to basement membrane (BM) proteins is considered a crucial step in the development of candidiasis. In this study the interactions of C. albicans yeast cells with the three main domains of type IV collagen, a major BM glycoprotein, were analysed. C. albicans adhered to the three immobilized domains by different mechanisms. Adhesion to the N-terminal cross-linking domain (7S) required the presence of divalent cations, whereas interaction with the central collagenous domain (CC) was cation-independent. Recognition of the C-terminal non-collagenous domain (NC1) was partially cation-dependent. Binding inhibition assays with the corresponding domains in soluble form showed that these interactions were specific. Both Ca2+ and Mg2+ promoted adhesion to the 7S domain and the interaction was completely abolished by EDTA. Treatment of the 7S domain, or its subunits, with N-glycosidase F reduced yeast binding by approximately 70%. Moreover, several sugars known to be part of the N-linked oligosaccharide chains of collagen IV inhibited adhesion to immobilized 7S; N-acetylglucosamine, L-fucose and methylmannoside caused a similar inhibition whereas N-acetyllactosamine was a more effective inhibitor. In contrast, glucose, galactose, lactose or heparan sulfate did not affect yeast binding. Combinations of the inhibitory sugars at suboptimal inhibition concentrations did not reduce C. albicans adhesion more than the individual sugars, pointing to a single lectin as responsible for the interaction. These results taken together show that C. albicans utilizes several adhesins for interacting with type IV collagen, and that at least one of them is a lectin which recognizes the 7S(IV) oligosaccharide residues as its receptor.
-
- Physiology And Growth
-
-
-
Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans
The GenBank accession number for the sequence reported in this paper is AF043230.
Trehalose is a non-reducing disaccharide found at high concentrations in Aspergillus nidulans conidia and rapidly degraded upon induction of conidial germination. Furthermore, trehalose is accumulated in response to a heat shock or to an oxidative shock. The authors have characterized the A. nidulans tpsA gene encoding trehalose-6-phosphate synthase, which catalyses the first step in trehalose biosynthesis. Expression of tpsA in a Saccharomyces cerevisiae tps1 mutant revealed that the tpsA gene product is a functional equivalent of the yeast Tps1 trehalose-6-phosphate synthase. The A. nidulans tpsA-null mutant does not produce trehalose during conidiation or in response to various stress conditions. While germlings of the tpsA mutant show an increased sensitivity to moderate stress conditions (growth at 45 °C or in the presence of 2 mM H2O2), they display a response to severe stress (60 min at 50 °C or in the presence of 100 mM H2O2) similar to that of wild-type germlings. Furthermore, conidia of the tpsA mutant show a rapid loss of viability upon storage. These results are consistent with a role of trehalose in the acquisition of stress tolerance. Inactivation of the tpsA gene also results in increased steady-state levels of sugar phosphates but does not prevent growth on rapidly metabolizable carbon sources (glucose, fructose) as seen in Saccharomyces cerevisiae. This suggests that trehalose 6-phosphate is a physiological inhibitor of hexokinase but that this control is not essential for proper glycolytic flux in A. nidulans. Interestingly, tpsA transcription is not induced in response to heat shock or during conidiation, indicating that trehalose accumulation is probably due to a post-translational activation process of the trehalose 6-phosphate synthase.
-
-
-
-
The acid-stress response in Lactobacillus sanfranciscensis CB1
More LessLactobacillus sanfranciscensis CB1, an important sourdough lactic acid bacterium, can withstand low pH after initial exposure to sublethal acidic conditions. The sensitivity to low pH varied according to the type of acid used. Treatment of Lb. sanfranciscensis CB1 with chloramphenicol during acid adaptation almost completely eliminated the protective effect, suggesting that induction of protein synthesis was required for the acid-tolerance response. Two constitutively acid-tolerant mutants, CB1-5R and CB1-7R, were isolated using natural selection techniques after sequential exposure to lactic acid (pH 3·2). Two-dimensional gel electrophoresis analysis of protein expression by non-adapted, acid-adapted and acid-tolerant mutant cells of Lb. sanfranciscensis showed changes in the levels of 63 proteins. While some of the modifications were common to the acid-adapted and acid-tolerant mutant cells, several differences, especially regarding the induced proteins, were determined. The two mutants showed a very similar level of protein expression. Antibodies were used to identify heat-shock proteins DnaJ, DnaK, GroES and GrpE. Only GrpE showed an increased level of expression in the acid-adapted and acid-tolerant mutants as compared with non-adapted cells. The N-terminal sequence was determined for two proteins, one induced in both the acid-adapted and mutant cells and the other showing the highest induction factor of those proteins specifically induced in the acid-adapted cells. This second protein has 60% identity with the N-terminal portion of YhaH, a transmembrane protein of Bacillus subtilis, which has 54 and 47% homology with stress proteins identified in Listeria monocytogenes and Bacillus halodurans. The constitutively acid-tolerant mutants showed other different phenotypic features compared to the parental strain: (i) the aminopeptidase activity of CB1-5R decreased and that of CB1-7R markedly increased, especially in acid conditions; (ii) the growth in culture medium at 10 °C and in the presence of 5% NaCl was greater (the same was found for acid-adapted cells); and (iii) the acidification rate during sourdough fermentation in acid conditions was faster and greater.
-
-
-
Characterization of an autostimulatory substance produced by Escherichia coli
More LessThe recovery of dilute populations of stationary phase cells of Escherichia coli was studied using an automatic growth analyser. The addition of 30% supernatant from 2-d-old stationary phase cells of the organism reproducibly shortened the apparent lag times by 22–57·5%, depending on the age of the inoculum. True lag times, as determined by colony counts, of stationary phase cells were reduced by supernatant addition by 41–62%. The growth-stimulating substance was characterized and partly purified from supernatants: the active material was shown to be dialysable, heat-stable, acid- and alkali-stable and protease-resistant. Extraction with ethyl acetate or ion-exchange resins was not successful, but the active material could be quantitatively extracted with ethanol after saturation with salt. It is concluded that the active substance is a small, non-proteinaceous, non-ionic organic molecule. Separation of extracts by HPLC indicated that the stimulatory substance is weakly hydrophobic and has retention times similar to those of uracil. So far, however, the exact chemical identity of the active substance has not been elucidated.
-
- Systematics And Evolution
-
-
-
Comparison of cell-wall polysaccharides from Nectria cinnabarina with those from the group of Nectria with Sesquicillium anamorphs
More LessAlkali-extractable and water-soluble polysaccharides were purified from cell walls of five species of Sesquicillium or its teleomorphs, Nectria lasiacidis and Nectria impariphialis, and from Nectria cinnabarina, the type species of Nectria, a heterogeneous genus that belongs to the Hypocreales. Methylation and NMR analyses for determination of linkage types and structure were performed and indicated differences between the polysaccharides purified during the present study and those isolated from other nectrioid fungi, namely the presence of 5-O-substituted galactofuranose (→5)-Galf-(1→) in the main chain together with 2,6-di-O-substituted galactofuranose (→2,6)-Galf-(1→) residues in Sesquicillium buxi and Sesquicillium pseudosetosum. The polysaccharide from N. impariphialis was similar to those obtained from the above species, although an additional residue of 6-O-substituted glucopyranose (→6)-Glcp-(1→), was detected in some side chains. In N. lasiacidis and Sesquicillium candelabrum the polysaccharide contained an additional branching point of 5,6-di-O-substituted galactofuranose (→5,6)-Galf-(1→) linked to terminal N-acetylglucosamine GlcNAc-(1→). These chains were linked to a small mannan core. All these polysaccharides showed major differences to the polysaccharide of N. cinnabarina, which was formed by a main chain of (1→6)-β-linked galactofuranose units almost fully branched at positions 2-O by either single residues of glucopyranose or acidic chains containing glucuronic acid and mannose.
-
-
-
-
The cryptic ushA gene (ushA c) in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation
The GenBank accession numbers for the sequences determined in this work are AF188721–AF188732.
Two mutational mechanisms, both supported by experimental studies, have been proposed for the evolution of new or improved enzyme specificities in bacteria. One mechanism involves point mutation(s) in a gene conferring novel substrate specificity with partial or complete loss of the original (wild-type) activity of the encoded product. The second mechanism involves gene duplication followed by silencing (inactivation) of one of these duplicates. Some of these ‘silent genes’ may still be transcribed and translated but produce greatly reduced levels of functional protein; gene silencing, in this context, is distinct from the more common associations with bacterial partitioning sequences, and with genes which are no longer transcribed or translated. Whereas most Salmonella enterica strains are ushA +, encoding an active 5′-nucleotidase (UDP-sugar hydrolase), some natural isolates, including most genetically related strains of serotype Typhimurium, have an ushA allele (designated ushA c) which produces a protein with, comparatively, very low 5′-nucleotidase activity. Previous sequence analysis of cloned ushA c and ushA + genes from serotype Typhimurium strain LT2 and Escherichia coli, respectively, did not reveal any changes which might account for the significantly different 5′-nucleotidase activities. The mechanism responsible for this reduced activity of UshAc has hitherto not been known. Sequence analysis of Salmonella ushA + and ushA c alleles indicated that the relative inactivity of UshAc may be due to one, or more, of four amino acid substitutions. One of these changes (S139Y) is in a sequence motif that is conserved in 5′-nucleotidases across a range of diverse prokaryotic and eukaryotic species. Site-directed mutagenesis confirmed that a Tyr substitution of Ser-139 in Salmonella UshA+ was solely responsible for loss of 5′-nucleotidase activity. It is concluded that the corresponding single missense mutation is the cause of the UshAc phenotype. This is the first reported instance of gene inactivation in natural isolates of bacteria via a missense mutation. These results support a model of evolution of new enzymes involving a ‘silent gene’ which produces an inactive, or relatively inactive, product, and are also consistent with the evolution of a novel, but unknown, enzyme specificity by a single amino acid change.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)