1887

Abstract

Two mutational mechanisms, both supported by experimental studies, have been proposed for the evolution of new or improved enzyme specificities in bacteria. One mechanism involves point mutation(s) in a gene conferring novel substrate specificity with partial or complete loss of the original (wild-type) activity of the encoded product. The second mechanism involves gene duplication followed by silencing (inactivation) of one of these duplicates. Some of these ‘silent genes’ may still be transcribed and translated but produce greatly reduced levels of functional protein; gene silencing, in this context, is distinct from the more common associations with bacterial partitioning sequences, and with genes which are no longer transcribed or translated. Whereas most strains are , encoding an active 5′-nucleotidase (UDP-sugar hydrolase), some natural isolates, including most genetically related strains of serotype Typhimurium, have an allele (designated ) which produces a protein with, comparatively, very low 5′-nucleotidase activity. Previous sequence analysis of cloned and genes from serotype Typhimurium strain LT2 and , respectively, did not reveal any changes which might account for the significantly different 5′-nucleotidase activities. The mechanism responsible for this reduced activity of UshA has hitherto not been known. Sequence analysis of and alleles indicated that the relative inactivity of UshA may be due to one, or more, of four amino acid substitutions. One of these changes (S139Y) is in a sequence motif that is conserved in 5′-nucleotidases across a range of diverse prokaryotic and eukaryotic species. Site-directed mutagenesis confirmed that a Tyr substitution of Ser-139 in UshA was solely responsible for loss of 5′-nucleotidase activity. It is concluded that the corresponding single missense mutation is the cause of the UshA phenotype. This is the first reported instance of gene inactivation in natural isolates of bacteria via a missense mutation. These results support a model of evolution of new enzymes involving a ‘silent gene’ which produces an inactive, or relatively inactive, product, and are also consistent with the evolution of a novel, but unknown, enzyme specificity by a single amino acid change.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1887
2001-07-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471887a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1887&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Greene Publishing Associates/Wiley Interscience;
    [Google Scholar]
  3. Bairoch A. 1992; PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 20:2013–2018 [CrossRef]
    [Google Scholar]
  4. Bass S., Gu Q., Christen A. 1996; Multicopy suppressors of Prc mutant Escherichia coli include two HtrA(DegP) protease homologs (HhoAB), DskA, and a trucated RlpA. J Bacteriol 178:1154–1161
    [Google Scholar]
  5. Beacham I. R. 1987; Silent genes in prokaryotes. FEMS Microbiol Rev 46:409–417 [CrossRef]
    [Google Scholar]
  6. Beacham I. R., Wilson M. S. 1982; Studies on the UDP-sugar hydrolases from Escherichia coli and Salmonella typhimurium. Arch Biochem Biophys. 218603–608 [CrossRef]
  7. Berger S. A., Rowan K., Morrison H. D., Ziltener H. J. 1996; Identification of a bacterial inhibitor of protein kinases. Mechanism and role in host cell invasion. J Biol Chem 271:23431–23437 [CrossRef]
    [Google Scholar]
  8. Burns D. M., Beacham I. R. 1986a; Identification and sequence analysis of a silent gene ( ush A0) in Salmonella typhimurium. J Mol Biol 192:163–175 [CrossRef]
    [Google Scholar]
  9. Burns D. M., Beacham I. R. 1986b; Nucleotide sequence and transcriptional analysis of the E. coli ush A gene, encoding periplasmic UDP-sugar hydrolase (5′-nucleotidase): regulation of the ush A gene, and the signal sequence of its encoded protein product. Nucleic Acids Res 14:4325–4342 [CrossRef]
    [Google Scholar]
  10. Burns D. M., Abraham L. J., Beacham I. R. 1983; Characterisation of the ush gene of Escherichia coli and its protein products. Gene 25:343–353 [CrossRef]
    [Google Scholar]
  11. Burns D. M., Burger M. J., Beacham I. R. 1995; Silent genes in bacteria: the previously designated ‘cryptic’ ilvHI locus of ‘ Salmonella typhimurium LT2’ is active in natural isolates. FEMS Microbiol Lett 131:167–172 [CrossRef]
    [Google Scholar]
  12. Clarke P. H. 1974; The evolution of enzymes for the utilisation of novel substrates. In Evolution in the Microbial World pp 183–217 Edited by Carlile M. J., Skehel J. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Cordwell S. J. 1999; Microbial genomes and ‘‘missing’’ enzymes: redefining biochemical pathways. Arch Microbiol 172:269–279 [CrossRef]
    [Google Scholar]
  14. Delorme C., Godon J.-J., Ehrlich S. D., Renault P. 1993; Gene inactivation in Lactococcus lactis : histidine biosynthesis. J Bacteriol 175:4391–4399
    [Google Scholar]
  15. Edwards C. J., Innes D. J., Burns D. M., Beacham I. R. 1993; UDP-sugar hydrolase isozymes in Salmonella enterica and Escherichia coli : silent alleles of ushA in related strains of group I Salmonella isolates, and of ushB in wild-type and K12 strains of E. coli , indicate recent and early silencing events, respectively. FEMS Microbiol Lett 114:293–298 [CrossRef]
    [Google Scholar]
  16. Feng P., Lampel K. A. 1994; Genetic analysis of uidA expression in enterohaemorrhagic Escherichia coli serotype O157: H7. Microbiology 140:2101–2107 [CrossRef]
    [Google Scholar]
  17. Fraser C. M., Norris S. J., Weinstock G. M. 22 other authors 1998; Complete genome sequence of Treponema pallidum , the syphilis spirochete. Science 281:375–388 [CrossRef]
    [Google Scholar]
  18. Fraser C. M., Eisen J. A., Salzberg S. L. 2000; Microbial genome sequencing. Nature 406:799–803 [CrossRef]
    [Google Scholar]
  19. Garrett A. R., Johnson L. A., Beacham I. R. 1989; Isolation, molecular characterization and expression of the ushB gene of Salmonella typhimurium which encodes a membrane-bound UDP-sugar hydrolase. Mol Microbiol 3:177–186 [CrossRef]
    [Google Scholar]
  20. Glaser L., Melo A., Paul R. 1967; Uridine diphosphate sugar hydrolase. Purification of enzyme and protein inhibitor. J Biol Chem 242:1944–1954
    [Google Scholar]
  21. Hall B. G. 1981; Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry 20:4042–4049 [CrossRef]
    [Google Scholar]
  22. Hall B. G. 1989; Selection, adaptation, and bacterial operons. Genome 31:265–271 [CrossRef]
    [Google Scholar]
  23. Hall B. G., Betts P. W. 1987; Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli . Genetics 115:431–439
    [Google Scholar]
  24. Hall B. G., Yokoyama S., Calhoun D. H. 1983; Role of cryptic genes in microbial evolution. Mol Biol Evol 1:109–124
    [Google Scholar]
  25. Hartley B. S. 1974; Enzyme families. In Evolution in the Microbial World pp 151–182 Edited by Carlile M. J., Skehel J. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  26. Hartley B. S. 1979; Evolution of enzyme structure. Proc R Soc Lond B Biol Sci 205:443–452 [CrossRef]
    [Google Scholar]
  27. Hartley B. S. 1980; Experimental enzyme evolution. In The Evolution of Protein Structure and Function pp 39–48 Edited by Sigman D. S., Brazier M. A. B. New York: Academic Press;
    [Google Scholar]
  28. Hartley B. S. 1984; Experimental evolution of ribitol dehydrogenase.. In Microorganisms as Model Systems for Studying Evolution pp 23–54 Edited by Mortlock R. P. New York: Plenum;
    [Google Scholar]
  29. Henikoff S., Henikoff J. G. 1992; Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919 [CrossRef]
    [Google Scholar]
  30. Hill C. W., Harnish B. W. 1981; Inversions between ribosomal RNA genes of Escherichia coli . Proc Natl Acad Sci USA 78:7069–7072 [CrossRef]
    [Google Scholar]
  31. Jones R. A., Burns D. M., Carruthers D. J., Beacham I. R. 1993; Membrane localisation of a UDP-sugar hydrolase, in Salmonella , is by an uncleaved N-terminal signal peptide. FEMS Microbiol Lett 114:299–304 [CrossRef]
    [Google Scholar]
  32. Knöfel T., Sträter N. 1999; X-ray structure of the Escherichia coli periplasmic 5′-nucleotidase containing a dimetal catalytic site. Nature Struct Biol 6:448–453 [CrossRef]
    [Google Scholar]
  33. Koch A. L. 1972; Enzyme evolution. I. The importance of untranslatable intermediates. Genetics 72:297–316
    [Google Scholar]
  34. Koonin E. V. 1994; Conserved sequence pattern in a wide variety of phosphoesterases . Protein. Sci 3:356–358
    [Google Scholar]
  35. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492 [CrossRef]
    [Google Scholar]
  36. Labedan B., Riley M. 1995; Widespread protein sequence similarities: origins of Escherichia coli genes. J Bacteriol 177:1585–1588
    [Google Scholar]
  37. Liyou N., Hamilton S., Elvin C., Willadsen P. 1999; Cloning and expression of ecto 5′-nucleotidase from the cattle tick Boophilus microplus . Insect Mol Biol 8:257–266 [CrossRef]
    [Google Scholar]
  38. Mighell A. J., Smith N. R., Robinson P. A., Markham A. F. 2000; Vertebrate pseudogenes. FEBS Lett 468:109–114 [CrossRef]
    [Google Scholar]
  39. Misumi Y., Ogata S., Ohkubo K., Hirose S., Ikehara Y. 1990a; Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem 191:563–569 [CrossRef]
    [Google Scholar]
  40. Misumi Y., Ogata S., Hirose S., Ikehara Y. 1990b; Primary structure of rat liver 5′-nucleotidase deduced from the cDNA. Presence of the COOH-terminal hydrophobic domain for possible post-translational modification by glycophospholipid. J Biol Chem 265:2178–2183
    [Google Scholar]
  41. Nakamaye K. L., Eckstein F. 1986; Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res 14:9679–9698 [CrossRef]
    [Google Scholar]
  42. Neu H. C. 1968; The 5′-nucleotidases and cyclic phosphodiesterases (3′-nucleotidases) of the Enterobacteriaceae . J Bacteriol 95:1732–1737
    [Google Scholar]
  43. Pollack J. D. 1997; Mycoplasma genes: a case for reflective annotation. Trends Microbiol 5:413–418 [CrossRef]
    [Google Scholar]
  44. Reeves M. W., Evins G. M., Heiba A. A., Plikaytis B. D., Farmer J. J. 1989; Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27:313–320
    [Google Scholar]
  45. Resta R., Hooker S. W., Hansen K. R., Laurent A. B., Park J. L., Blackburn M. R., Knudsen T. B., Thompson L. F. 1993; Murine ecto-5′-nucleotidase (CD73): cDNA cloning and tissue distribution. Gene 133:171–177 [CrossRef]
    [Google Scholar]
  46. Rigby P. W. J., Burleigh B. D., Hartley B. S. 1974; Gene duplication in experimental enzyme evolution. Nature 251:200–204 [CrossRef]
    [Google Scholar]
  47. Riley M., Labedan B. 1997; Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. J Mol Biol 268:857–868 [CrossRef]
    [Google Scholar]
  48. Riley M., Sanderson K. E. 1990; Comparative genetics of Escherichia coli and Salmonella typhimurium . In The Bacterial Chromosome pp 85–95 Edited by Drlica K., Riley M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  49. Rine J. 1999; On the mechanism of silencing in Escherichia coli. Proc Natl Acad Sci USA. 968309–8311 [CrossRef]
  50. Steed P. M., Wanner B. L. 1993; Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 175:6797–6809
    [Google Scholar]
  51. Suzuki K., Furukawa Y., Tamura H., Ejiri N., Suematsu H., Taguchi R., Nakamura S., Suzuki Y., Ikezawa H. 1993; Purification and cDNA cloning of bovine liver 5′-nucleotidase, a GPI-anchored protein, and its expression in COS cells. J Biochem 113:607–613
    [Google Scholar]
  52. Tamao Y., Noguchi K., Sakai-Tomita Y., Hama H., Shimamoto T., Kanazawa H., Tsuda M., Tsuchiya T. 1991; Sequence analysis of nut A gene encoding membrane-bound Cl-dependent 5′-nucleotidase of Vibrio parahaemolyticus . J Biochem 109:24–29
    [Google Scholar]
  53. Taylor J. W., Ott J., Eckstein F. 1985; The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA . Nucleic Acids Res. 138765–8785 [CrossRef]
  54. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  55. Volknandt W., Vogel M., Pevsner J., Misumi Y., Ikehara Y., Zimmermann H. 1991; 5′-nucleotidase from the electric ray electric lobe. Primary structure and relation to mammalian and procaryotic enzymes. Eur J Biochem 202:855–861 [CrossRef]
    [Google Scholar]
  56. Zimmermann H. 1992; 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 285:345–365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1887
Loading
/content/journal/micro/10.1099/00221287-147-7-1887
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error