- Volume 143, Issue 8, 1997
Volume 143, Issue 8, 1997
- Microbiology Comment
-
- Biochemistry
-
-
-
The form of folate affects the mechanisms of methotrexate resistance in Enterococcus faecium
More LessSummary: Several mechanisms have been described to explain the resistance of cells to methotrexate (MTX); however, the basis for the heterogeneity of mechanisms has been obscure. It was hypothesized that the type of MTX resistance in a single species can be influenced by the form of extracellular folate supplied during the development of resistance. Two strains of MTX-resistant Enterococcus faecium were developed by transferring the bacteria to media containing increasing concentrations of MTX in the presence of constant concentrations of either 5-formyl-5,6,7,8-tetrahydropteroylglutamic acid (5-HCO-H4PteGlu) or pteroylglutamic acid (PteGlu). These resistant strains were designated E. faecium/MTX/5-HCO-H4PteGlu and E. faecium/MTX/PteGlu, respectively. The mechanisms of MTX resistance included: (1) increased folic acid reductase (FAR) activity in both resistant strains but increased dihydrofolate reductase (DHFR) activity only in E. faecium/MTX/PteGlu; (2) decreased synthesis and intracellular retention of MTX containing two glutamyl residues; (3) decreased uptake of MTX accompanied by decreased uptake of folates; and (4) reduction of folate-binding capacity. Among these, the form of folate present in the media during the development of resistance affected DHFR and FAR activities and the transport of folates. These findings, together with data from other laboratories, suggest that it may be important to use a reduced form of folate, a more physiological form than oxidized PteGlu, in the media during the development of resistance for the study of the mechanisms of MTX resistance in cultured cells.
-
-
-
-
A reassessment of the genetic determinants, the effect of growth conditions and the availability of an electron donor on the nitrosating activity of Escherichia coli K-12
More LessSummary: Anaerobic, but not aerobic, cultures of Escherichia coli K-12 catalysed the rapid nitrosation of the model substrate 2,3-diaminonaphthalene when incubated with nitrite. Formate and lactate were effective electron donors for the nitrosation reaction, which was inhibited by nitrate. Optimal growth conditions for the expression of nitrosation activity by various strains and mutants were determined. Highest activities were found with bacteria that had been grown anaerobically in a minimal medium rather than in Lennox broth, with glycerol and fumarate rather than glucose as the main carbon and energy source, and in the presence of a low concentration of nitrate. Bacteria harvested in the early exponential phase were more active than those harvested in later stages of growth. Well-characterized mutants defective in the synthesis of one or more anaerobically induced electron transfer chains were screened for nitrosation activity under these optimal growth conditions: only the respiratory nitrate reductase encoded by the narGHJI operon was implicated as a major contributor to nitrosation activity. Due to the limited sensitivity of the assays currently available, a minor contribution from the two alternative nitrate reductases or even other molybdoproteins could not be excluded. The role of formate in nitrosation was complex and was clearly not limited simply to that of an electron donor in the bacterial reduction of nitrite to nitric oxide: at least two further, chemical roles were inferred. This extensive study of more than 400 independent cultures of E. coli K-12 and its derivatives resolved some, but not all, of the apparently conflicting data in the literature concerning nitrosation catalysed by enteric bacteria.
-
- Bioenergetics And Transport
-
-
-
Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria
More LessSummary: Bacteria synthesize and secrete an array of complex carbohydrates including exopolysaccharides (EPSs), capsular polysaccharides (CPSs), lipopolysaccharides (LPSs), lipo-oligosaccharides (LOSs) and teichoic acids (TCAs). We have analysed the families of homologous proteins that appear to mediate excretion of complex carbohydrates into or across the bacterial cell envelope. Two principal families of cytoplasmic-membrane transport systems appear to drive polysaccharide export: polysaccharide-specific transport (PST) systems and ATP-binding cassette-2 (ABC-2) systems. We present evidence that the secretion of CPSs and EPSs, but not of LPSs, LOSs or TCAs via a PST or ABC-2 system requires the presence of a cytoplasmic-membrane-periplasmic auxiliary protein (MPA1 or MPA2, respectively) in both Gram-negative and Gram-positive bacteria as well as an outer-membrane auxiliary (OMA) protein in Gram-negative bacteria. While all OMA proteins are included within a single family, MPA1 and MPA2 family proteins are not demonstrably homologous to each other, even though they share common topological features. Moreover, MPA1 family proteins (which function with PST systems), but not MPA2 family proteins (which function with ABC-2 systems), possess cytoplasmic ATP-binding domains that may either exist as separate polypeptide chains (for those from Gram-positive bacteria) or constitute the C-terminal domain of the MPA1 polypeptide chain (for those from Gram-negative bacteria). The sizes, substrate specificities and regions of relative conservation and hydrophobicity are defined allowing functional and structural predictions as well as delineation of family-specific sequence motifs. Each family is characterized phylogenetically.
-
-
- Biotechnology
-
-
-
Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae
Summary: Klebsiella pneumoniae overcomes cadmium toxicity through the ‘biotransformation’ of cadmium ions into photoactive, nanometre-sized CdS particles deposited on the cell surface. The kinetics of particle formation during batch culture growth was monitored by electron microscopy (EM), energy-dispersive X-ray analysis and electronic absorption spectroscopy (EAS). During the deceleration phase of bacterial growth, the presence of CdS particles on the outer cell wall of K. pneumoniae (≥ 5 nm in diameter) was detected by EM. The size of these electron-dense particles continued to increase throughout the stationary phase of growth, with some of the particles reaching a diameter >200 nm. The formation of the extracellular CdS particles contributed to around 3-4% of the total cell biomass. EAS undertaken on these extracellular ‘bio-CdS’ particles suggested that the large ‘superparticles’ observed by EM, e.g. 200 nm, were aggregates of smaller particles termed ‘Q-particles’, ~ 4 nm in diameter. Metal sulfide particles were not formed in batch cultures of K. pneumoniae grown in the presence of lead, zinc, mercury, copper or silver ions. Growth in the presence of lead ions resulted in the formation of extracellular electron-dense particles containing lead but not sulfide or phosphate. Intracellular phosphorus-containing electron-opaque particles were formed during growth in the presence of copper and mercury. Intracellular electron-dense particles were formed in the presence of zinc ions but these did not contain phosphorus. From these results it was thought that metal sulfide formation in K. pneumoniae showed some cadmium-specificity. When cadmium and zinc ions were both added to the growth medium, metal sulfide particles were formed that were predominantly composed of cadmium, e.g. 48.6% cadmium and 0.04% zinc. Similarly, when cadmium and lead ions were both present during growth only CdS particles formed. In both cases analysis of the cells by EAS confirmed the presence of CdS only. These observations suggest that the mechanism of CdS formation is unlikely to occur simply through a cadmium-induced release of hydrogen sulfide by the cells into the external environment. If hydrogen sulfide production was the mechanism of sulfide formation then metal sulfide particles containing lead and zinc ions in addition to cadmium ions should have been produced.
-
-
-
-
Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp.
More LessSummary: The eicosapentaenoic acid (EPA) synthesis gene cluster isolated from a marine bacterium, Shewanella putrefaciens strain SCRC-2738, was cloned and expressed in the marine cyanobacterium Synechococcus sp. A broad-host-range cosmid vector, pJRD215 (10.2 kb, Smr Kmr), was used to clone a 38 kb insert, pEPA, containing the EPA synthesis gene cluster, creating plasmid pJRDEPA (approx. 48 kb). This plasmid was transferred to the cyanobacterial host at a frequency of 2.2 x 10−7. Cyanobacterial transconjugants grown at 29 °C produced 0.12 mg EPA (g dry weight)−1, whereas those grown at 23 °C produced 0.56 mg EPA (g dry weight)−1. The yield was further improved to 0.64 mg (g dry weight)−1 by incubation for 1 d at 17 °C. This is believed to be the first successful cloning and expression of such a large heterologous gene cluster in a marine cyanobacterium.
-
- Environmental Microbiology
-
-
-
Tn5041: a chimeric mercury resistance transposon closely related to the toluene degradative transposon Tn4651
Summary: This paper reports the discovery and characterization of Tn5041, a novel-type transposon vehicle for dissemination of mercury resistance in natural bacterial populations. Tn5041 (14876 bp), identified in a Pseudomonas strain from a mercury mine, is a Tn3 family mercury resistance transposon far outside the Tn21 subgroup. As in other Tn3 family transposons, Tn5041 duplicates 5 bp of the target sequence following insertion. Tn5041 apparently acquired its mer operon as a single-ended relic of a transposon belonging to the classical mercury resistance transposons of the Tn21 subgroup. The putative transposase and the 47 bp terminal inverted repeats of Tn5041 are closely related to those of the toluene degradative transposon Tn4651 and fall into a distinct subgroup on the fringe of the Tn3 family. The amino acid sequence of the putative resolvase of Tn5041 resembles site-specific recombinases of the integrase family. Besides the mer operon and putative transposition genes, Tn5041 contains a 4 kb region that accommodates a number of apparently defective genes and mobile elements.
-
-
-
-
Adhesion of Pseudomonas aeruginosa to silicone rubber in a parallel plate flow chambe in the absence and presence of nutrient broth
More LessSummary: The physico-chemical cell-surface properties of Pseudomonas aeruginosa Al and its adhesion to silicone rubber under flow were compared for cells suspended in phosphate-buffered saline (PBS) or PBS supplemented with 2% nutrient broth. Addition of 2% nutrient broth to cells suspended in PBS yields minimal growth and did not significantly change the mean zeta potential of the organisms, which was around -13 mV. However, a comparatively larger proportion of the organisms had more negative zeta potentials in the presen of nutrient broth. This change was concurrent with a slight decrease in cell-surface hydrophobicity, as measured by water contact angles, from 119° to around 112°. The initial deposition rate of P. aeruginosa AK1 to silicone rubber, as studied in a parallel plate flow chamber, increased from 344 cm−2 s−1 in the absence of nutrient broth to 505 cm−2 s−1 in its presence. No stationary level of adhesion was observed in the presence of nutrient broth, instead the number of adhering cells increased steadily at a rate of approximately 85 cm−2 s−1. Fluorescent staining of adhering cells demonstrated that for adhesion from buffer only 2% of the adhering cells were metabolically active, whereas in case of deposition from PBS supplemented with nutrient broth, 67% of the adhering cells were metabolically active. It is concluded that the deposition rates measured in the parallel plate flow chamber with 2% nutrient broth added to the PBS suspension represent an interplay of adhesion and surface-associated growth.
-
- Genetics And Molecular Biology
-
-
-
Association of newly discovered IS elements with the dichloromethane utilization genes of methylotrophic bacteria
More LessSummary: Dichloromethane (DCM) dehalogenases enable facultative methylotrophic bacteria to utilize DCM as sole carbon and energy source. DCM-degrading aerobic methylotrophic bacteria expressing a type A DCM dehalogenase were previously shown to share a conserved 4.2 kb BamHI DNA fragment containing the dehalogenase structural gene, dcmA, and dcmR, the gene encoding a putative regulatory protein. Sequence analysis of a 10 kb DNA fragment including this region led to the identification of three types of insertion sequences identified as IS 1354, IS1355 and IS1357, and also two ORFs, orf353 and orf192, of unknown function. Two identical copies of element IS 1354 flank the conserved 4.2 kb fragment as a direct repeat. The occurrence of these newly identified IS elements was shown to be limited to DCM-utilizing methylotrophs containing a type A DCM dehalogenase. The organization of the corresponding dcm regions in 12 DCM-utilizing strains was examined by hybridization analysis using IS-specific probes. Six different groups could be defined on the basis of the occurrence, position and copy number of IS sequences. All groups shared a conserved 5.6 kb core region with dcmA, dcmR, orf353 and orf192 as well as IS1357. One group of strains including Pseudomonas sp. DM1 contained two copies of this conserved core region. The high degree of sequence conservation observed within the genomic region responsible for DCM utilization and the occurrence of clusters of insertion sequences in the vicinity of the dcm genes suggest that a transposon is involved in the horizontal transfer of the DCM-utilization character among methylotrophic bacteria.
-
-
-
-
Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases
Summary: Acetylesterase and cinnamoyl ester hydrolase activities were demonstrated in culture supernatant of the anaerobic ruminal fungus Neocallimastix patriciarum. A cDNA expression library from N. patriciarum was screened for esterases using β-naphthyl acetate and a model cinnamoyl ester compound. cDNA clones representing four different esterase genes (bnaA-D) were isolated. None of the enzymes had cinnamoyl ester hydrolase activity, but two of the enzymes (BnaA and BnaC) had acetylxylan esterase activity. bnaA, bnaB and bnaC encode proteins with several distinct domains. Carboxy-terminal repeats in BnaA and BnaC are homologous to protein-docking domains in other enzymes from Neocallimastix species and another anaerobic fungue, a Piromyces sp. The catalytic domains of BnaB and BnaC are members of a recently described family of Ser/His active site hydrolases [Upton, C. & Buckley, J. T. (1995). Trends Biochem Sci 20, 178-179]. BnaB exhibits 40% amino acid identity to a domain of unknown function in the CeIE cellulase from Clostridium thermocellum and BnaC exhibits 52% amino acid identity to a domain of unknown function in the XynB xylanase from Ruminococcus flavefaciens. BnaA, whilst exhibiting less than 10% overall amino acid identity to BnaB or BnaC, or to any other known protein, appears to be a member of the same family of hydrolases, having the three universally conserved amino acid sequence motifs. Several other previously described esterases are also shown to be members of this family, including a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. However, none of the other previously described enzymes with acetylxylan esterase activity are members of this family of hydrolases.
-
-
-
The KIPHO5 gene encoding a repressible acid phosphatase in the yeast Kluyveromyces lactis: cloning, sequencing and transcriptional analysis of the gene, and purification and properties of the enzyme
More LessSummary: A secreted phosphate-repressible acid phosphatase from Kluyveromyces lactis has been purified and the N-terminal region and an internal peptide have been sequenced. Using synthetic oligodeoxyribonucleotides based on the sequenced regions, the genomic sequence, KIPHO5, encoding the protein has been isolated. The deduced protein, named KIPho5p, consists of 469 amino acids and has a molecular mass of 52 520 Da (in agreement with the data obtained after treatment of the protein with endoglycosidase H). The purified enzyme shows size heterogeneity, with an apparent molecular mass in the range 90-200 kDa due to the carbohydrate content (10 putative glycosylation sites were identified in the sequence). A 16 amino acid sequence at the N-terminus is similar to previously identified signal peptides in other fungal secretory proteins. The putative signal peptide is removed during secretion since it is absent in the mature secreted acid phosphatase. The gene can be induced 400-600-fold by phosphate starvation. Consensus signals corresponding to those described for Saccharomyces cerevisiae PHO4- and PHO2-binding sites are found in the 5′ region. Northern blot analysis of total cellular RNA indicates that the KIPHO5 gene codes for a 1.8 kb transcript and that its expression is regulated at the transcriptional level. Chromosomal hybridization indicated that the gene is located on chromosome II. The KIPHO5 gene of K. lactis is able to functionally complement a pho5 mutation of Sacch. cerevisiae. Southern blot experiments, using the KIPHO5 gene as probe, show that some K. lactis reference strains lack repressible acid phosphatase, revealing a different gene organization for this kind of multigene family of proteins as compared to Sacch. cerevisiae.
-
-
-
Mycobacteriophage D29 contains an integration system similar to that of the temperate mycobacteriophage L5
More LessSummary: A mycobacteriophage D29 DNA fragment cloned in pRM64, a shuttle plasmid that transforms Mycobacterium smegmatis, was sequenced. The determined sequence was 2592 nucleotides long and had a mean G+C content of 63.7 mol%, similar to that of mycobacterial DNA. Four ORFs were identified: one with strong homology to dCMP deaminase genes; one homologous to mycobacteriophage L5 gene 36, whose function is unknown; one encoding a possible excisase; and one encoding an integrase. The intergenic region between the putative excisase gene and the integrase gene had a lower than average G+C content and showed the presence of the same attP core sequence as mycobacteriophage L5. Transformation experiments using subclones of pRM64 indicated that the integrase gene and all the intergenic region were essential for stable transformation. A subclone containing the integrase gene and the core attP sequence was able to transform but recombinants were highly unstable. Southern analysis of total DNA from cells transformed with pRM64 and its derivatives showed that all the plasmids were integrated at one specific site of the bacterial chromosome. A recombinant exhibiting a high level of resistance to the selective drug kanamycin had two plasmids integrated at different sites. These results demonstrated that the D29 sequences contained in pRM64 were integrative, indicating that the generally held view of D29 as a virulent phage must be reviewed.
-
-
-
Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826
Summary: Four Lactobacillus strains (Lb. plantarum NCIMB 8826, Lb. paracasei LbTGS1.4, Lb. casei ATCC 393 and Lb. fermentum KLD) were tested for their ability to produce and secrete heterologous proteins. These strains were first screened with an α-amylase reporter under the control of a set of expression or expression/secretion signals from various lactic acid bacteria. With most of the constructions tested, the level of extracellular production was highest in Lb. plantarum NCIMB 8826, and lowest in Lb. paracasei LbTGS1.4. These two strains were next assayed using a model antigen consisting of the N-terminal part of the M6 protein from Streptococcus pyogenes fused to the linear epitope ELDKWAS from human immunodeficiency virus gp41 protein. Secretion of this heterologous protein was inefficient in Lb. paracasei LbTGS1.4, which accumulated a large intracellular pool of the unprocessed precursor, whereas Lb. plantarum NCIMB 8826 was able to secrete the antigen to a level as high as 10 mg I−1.
-
-
-
SpoOA represses transcription of the cry toxin genes in Bacillus thuringiensis
More LessSummary: The DNA regions upstream from the genes encoding polypeptides of Bacillus thuringiensis subsp. israelensis larvicidal crystals (cry4A, cry4B, cry11A) contain sequences with similarities to the spoOA box of Bacillus subtilis (or ‘OA’ box) and the promoter recognized by the σH-associated RNA polymerase of B. subtilis. Expression of cry-lacZ transcriptional fusions was analysed in various B. thuringiensis genetic backgrounds. The early transcription of the toxin genes was not sporulation-dependent, whereas the late-stage expression at t 4-6 was σE-dependent. Primer extension analysis confirmed that the cry4-and cry11-type toxin genes were weakly transcribed during the transition phase; expression analysis of a cry11A'-lacZ transcriptional fusion in B. subtilis sporulation mutants confirmed the involvement of the σH-RNA polymerase. Primer extension analysis showed that in B. thuringiensis subsp. israelensis, the cry4A and cry11A gene transcription observed at the end of the growth stage was turned off at the beginning of the sporulation phase. The DNA region located upstream from the cry11A gene promoter including the putative ‘OA’ box was deleted. This led to a derepression of the expression of the cry11A operon. These results suggest that the cry4A, cry4B and cry11A toxin genes of B. thuringiensis subsp. israelensis are transcribed during the transition phase by the RNA polymerase associated with the σH factor and are subject to SpoOA repression.
-
-
-
Mutational analysis of the early forespore/mother-cell signalling pathway in Bacillus subtilis
More LessSummary: Intercellular communication is a crucial phenomenon during spore development in Bacillus subtilis. It couples the establishment of a compartment-specific genetic program to the transcriptional activity of a σ factor in the other compartment. It also keeps σ factor activation in register with the morphological process. This study used directed mutagenesis to analyse the pathway that couples σE activation in the mother-cell to activation of σF in the forespore following asymmetric septation. Targets for mutagenesis in SpollGA (the receptor) were chosen based on the predicted topology of the protein when associated with the cell membrane. The results showed that a residue near the N terminus (D6), predicted to be exposed outside the cell, is required for receptor activity, whereas the major extracellular loop (between membrane domains IV and V) is dispensable for function. In contrast, mutations in SpollR (the signal) that partially blocked protein release (but not membrane translocation) had no effect on signal transduction. These results do not rule out the possibility that uncharacterized molecules intervene in the signalling pathway that establishes the mother-cell-specific developmental program during the early stage of sporulation.
-
-
-
Molecular characterization of the Serratia marcescens OmpF porin, and analysis of S. marcescens OmpF and OmpC osmoregulation
More LessSummary: Serratia marcescens is a nosocomial pathogen with a high incidence of β-lactam resistance. Reduced amounts of outer-membrane porins have been correlated with increased resistance to β-lactams but only one porin, OmpC, has been characterized at the molecular level. In this study we present the molecular characterization of a second porin, OmpF, and an analysis of the expression of S. marcescens porins in response to various environmental changes. Two porins were isolated from the outer membrane using urea-SDS-PAGE and the relative amounts were shown to be influenced by the osmolarity of the medium and the presence of salicylate. From a S. marcescens genomic DNA library an 8 kb EcoRI fragment was isolated that hybridized with an oligonucleotide encoding the published N-terminal amino acid sequence of the S. marcescens 41 kDa porin. A 41 kDa protein was detected in the outer membrane of Escherichia coli NM522 carrying the cloned S. marcescens DNA. The cloned gene was sequenced and shown to code for a protein that shared 60-70% identity with other known OmpF and OmpC sequences. The upstream DNA sequence of the S. marcescens gene was similar to the corresponding E. coli ompF sequence; however, a regulatory element important in repression of E. coli ompF at high osmolarity was absent. The cloned S. marcescens OmpF in E. coli increased in expression in conditions of high osmolarity. The potential involvement of micF in the observed osmoregulation of S. marcescens porins is discussed.
-
-
-
Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli
Summary: The replicator region of the symbiotic plasmid of Rhizobium etli CFN42 was cloned and sequenced. A plasmid derivative (pH3) harbouring a 5.6 kb HindIII fragment from the symbiotic plasmid was found to be capable of independent replication and eliminated the symbiotic plasmid when introduced into a R. etli CFNX101 strain (a recA derivative). The stability and the copy number of pH3 were the same as that of the symbiotic plasmid, indicating that the information required for stable replication and incompatibility resides in the 5.6 kb HindIII fragment. The sequence analysis of this fragment showed the presence of three ORFs similar in sequence and organization to repA, repB and repC described for the replicator regions of the Agrobacterium plasmids pTiB6S3 and pRiA4b and for the R. leguminosarum cryptic plasmid pRL8JI. Hybridization studies showed that p42d-like replicator sequences are found in the symbiotic plasmids of other R. etli strains and in a ‘cryptic’ plasmid of R. tropici.
-
-
-
Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis
More LessSummary: Pseudomonas alcaligenes NCIB 9867 (strain P25X), which grows on 2,5-xylenol and harbours the plasmid RP4, was mated with a plasmid-free derivative of Pseudomonas putida NCIB 9869, strain RA713, which cannot grow on 2,5-xylenol. Some RA713 transconjugants, initially selected on 2,5-xylenol, were found to carry RP4 plasmids that had acquired additional fragments (designated XIn) which ranged in size from 2 kb to approximately 26 kb. Instability of DNA inserts in RP4::XIn hybrid plasmids was observed. The smallest insert present in a stable RP4::XIn6 hybrid plasmid, termed XIn6, yielded multiple bands when it was used as a probe with digested P25X chromosomal DNA. Sequence analysis of XIn6 led to the discovery of an open reading frame with homology to the maturases of group II introns. The XIn6 insert also exhibited several features characteristic of a group II intron. These included the presence of the consensus sequence GUGYG at the 5′ end and RAY at the 3′ end of the intron. RNA secondary structure modelling of XIn6 also revealed the presence of perfectly conserved domains V and VI. Differences were detected in the XIn6 hybridization profiles of several P25X catabolic mutants that have lost the ability to grow on 2,5-xylenol. In these mutants the loss of 2,5-xylenol degradative ability could be due to genome rearrangements mediated by sequences related to the XIn6 group II intron. This is the first reported group II intron isolated from Pseudomonas spp. and the first time that the mobility of a bacterial group II intron has been demonstrated.
-
- Pathogenicity And Medical Microbiology
-
-
-
Heat shock response and groEL sequence of Bartonella henselae and Bartonella quintana
More LessSummary: Transmission of Bartonella species from ectoparasites to the mammalian host involves adaptation to thermal and other forms of stress. In order to better understand this process, the heat shock response of Bartonella henselae and Bartonella quintana was studied. Cellular proteins synthesized after shift to higher temperatures were intrinsically labelled with [35S]methionine and analysed by gel electrophoresis and fluorography. The apparent molecular masses of three of the major heat shock proteins produced by the two Bartonella species were virtually identical, migrating at 70, 60 and 10 kDa. A fourth major heat shock protein was larger in B. quintana (20 kDa) than in B. henselae (17 kDa). The maximum heat shock response in B. quintana and B. henselae was observed at 39 °C and 42 °C, respectively. The groEL genes of both Bartonella species were amplified, sequenced and compared to other known groEL genes. The phylogenetic tree based on the groEL alignment places B. quintana and B. henselae in a monophyletic group with Bartonella bacilliformis. The deduced amino acid sequences of Bartonella GroEL homologues contain signature sequences that are uniquely shared by members of the Gram-negative α-purple subdivision of bacteria, which live within eukaryotic cells. Recombinant His6-GroEL fusion proteins were expressed in Escherichia coli to generate specific rabbit antisera. The GroEL antisera were used to confirm the identity of the 60 kDa Bartonella heat shock protein. These studies provide a foundation for evaluating the role of the heat shock response in the pathogenesis of Bartonella infection.
-
-
- Physiology And Growth
-
-
-
Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe
More LessSummary: A method was established to measure the cytoplasmic pH of the facultative alkaliphilic strain, Bacillus lentus C-125. The bacterium was loaded with a pH-sensitive fluorescent probe, 2′,7′-bis-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein (BCECF), and cytoplasmic pH was determined from the intensity of fluorescence of the intracellular BCECF. The activity of the organism to maintain neutral cytoplasmic pH was assessed by measuring the cytoplasmic pH of the cells exposed to various pH conditions. The cytoplasmic pH maintenance activity of C-125 increased with increasing culture pH, indicating that the activity was regulated in response to the culture pH.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)