1887

Abstract

Summary: This paper reports the discovery and characterization of Tn, a novel-type transposon vehicle for dissemination of mercury resistance in natural bacterial populations. Tn (14876 bp), identified in a strain from a mercury mine, is a Tn3 family mercury resistance transposon far outside the Tn subgroup. As in other Tn3 family transposons, Tn duplicates 5 bp of the target sequence following insertion. Tn apparently acquired its mer operon as a single-ended relic of a transposon belonging to the classical mercury resistance transposons of the Tn subgroup. The putative transposase and the 47 bp terminal inverted repeats of Tn are closely related to those of the toluene degradative transposon Tn and fall into a distinct subgroup on the fringe of the Tn family. The amino acid sequence of the putative resolvase of Tn resembles site-specific recombinases of the integrase family. Besides the mer operon and putative transposition genes, Tn contains a 4 kb region that accommodates a number of apparently defective genes and mobile elements.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2549
1997-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2549.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2549&mimeType=html&fmt=ahah

References

  1. Abremski K. E., Hoess R. H. 1992; Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng 5:87–91
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Amuthan G., Mahadevan A. 1994; Replicon typing of plasmids of phytopathogenic xanthomonads. Plasmid 32:328–332
    [Google Scholar]
  4. An F. Y., Clewell D. B. 1991; Tn917 transposase: sequence correction reveals a single open reading frame corresponding to the tnpA determinant of Tn3-family elements. Plasmid 25:121–124
    [Google Scholar]
  5. Argos P., Landy P., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., Kahn M. L., Kalionis B., Narayana S. V. L., Pierson L. S. III, Sternberg N., Leong J. M. 1986; The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440
    [Google Scholar]
  6. Arthur M., Molinas C., Depardieu F., Courvalin P. 1993; Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptido-glycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127
    [Google Scholar]
  7. Barton B. M., Hardling G. P., Zuccarelli A. J. 1995; A general method for detecting and sizing large plasmids. Anal Biochem 226:235–240
    [Google Scholar]
  8. Baum J. A. 1994; Tn5401, a new class II transposable element from Bacillus thuringiensis. . J Bacteriol 176:2835–2845
    [Google Scholar]
  9. Baum J. A. 1995; TnpI recombinase: identification of sites within Tn5401 required for TnpI binding and site-specific recombination. J Bacteriol 177:4036–4042
    [Google Scholar]
  10. Birnboim H., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  11. Blakely G., May G., McCulloch R., Arciszewska L. K., Burke M., Lovett S. T., Sherratt D. J. 1993; Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75:351–361
    [Google Scholar]
  12. Bogdanova E. S., Mindlin S. Z., Kalyaeva E. S., Nikiforov V. G. 1998; The diversity of mercury reductases among mercury-resistant bacteria. FEBS Lett 234:280–282
    [Google Scholar]
  13. Brown H. J., Stokes H. W., Hall R. M. 1996; The integrons In0, In2, and In5 are defective transposon derivatives. J Bacteriol 178:4429–4437
    [Google Scholar]
  14. Chen J.-W., Lee J., Jayaram M. 1992; DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell 69:647–658
    [Google Scholar]
  15. Chiou C.-S., Jones A. L. 1993; Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 175:732–740
    [Google Scholar]
  16. Eckhardt T. 1978; A rapid method for identification of plasmid desoxyribonucleic acid in bacteria. Plasmid 1:584–588
    [Google Scholar]
  17. Elhai J., Cai Y., Wolk P. C. 1994; Conduction of pEC22, a plasmid coding for MR.EcoT22I, mediated by a resident Tn3-like transposon, Tn5396 . J Bacteriol 176:5059–5067
    [Google Scholar]
  18. Friello D. A., Chakrabarty A. M. 1980; Transposable mercury resistance in Pseudomonas putida. . In Plasmids and Transposons: Environmental Effects and Maintenance Mechanisms pp. 249–259 . Edited by Stuard C., Rozee K. R. New York: Academic Press;
    [Google Scholar]
  19. Grinsted J., Brown N. L. 1984; A Tn21 terminal sequence within Tn501: complementation of tnpA gene function and transposon evolution. Mol Gen Genet 197:497–502
    [Google Scholar]
  20. Grinsted J., de la Cruz F., Altenbuchner J., Schmitt R. 1982; Complementation of transposition of tnpA mutants of Tn3, Tn21, Tn501, and Tn1721. . Plasmid 8:276–286
    [Google Scholar]
  21. Grinsted J., de la Cruz F., Schmitt R. 1990; The Tn21 subgroup of bacterial transposable elements. Plasmid 24:163–189
    [Google Scholar]
  22. Hallberg E., Wozniak R. W., Blobel G. 1993; An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 122:513–521
    [Google Scholar]
  23. Ivey D. M., Guffanti A., A, Shen Z., Kudyan N., Krulwich T. A. 1992; The cadC gene product of alkaliphilic Bacillus firmus OF4 partially restores Na+ resistance to an Escherichia coli strain lacking an Na+/H+ antiporter (NhaA). J Bacteriol 174:4878–4884
    [Google Scholar]
  24. Kelly W. J., Reanney D. C. 1984; Mercury resistance among soil bacteria: ecology and transferability of genes encoding resistance. Soil Biol Biochem 16:1–8
    [Google Scholar]
  25. Khesin R. B., Karasyova E. V. 1984; Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Mol Gen Genet 197:280–285
    [Google Scholar]
  26. Kholodii G., Yurieva O., Lomovskaya O., Gorlenko, Zh., Mindlin S., Nikiforov V. 1993; Tn5053, a mercury resistance transposon with integron’s ends. J Mol Biol 230:1103–1107
    [Google Scholar]
  27. Kholodii G., Ya., Mindlin S. Z., Bass I. A., Yurieva O. V., Minakhina S. V., Nikiforov V. G. 1995; Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 17:1189–1200
    [Google Scholar]
  28. Lebrun M., Audurier A., Cossart P. 1994; Plasmid-borne cadmium resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn917 . J Bacteriol 176:3049–3061
    [Google Scholar]
  29. Lett M.-C., Bennett P. M., Vidon D. J.-M. 1985; Characterization of Tn3926, a new mercury-resistance transposon from Yersinia enterocolitica. . Gene 40:79–91
    [Google Scholar]
  30. Mahillon J., Lereclus D. 1988; Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the cointegrate-resolution process. EMBO J 7:1515–1526
    [Google Scholar]
  31. Mahler I., Levinson H. S., Wang Y., Halvorson H. O. 1986; Cadmium- and mercury-resistant Bacillus strains from a salt marsh and from Boston Harbor. Appl Environ Microbiol 52:1293–1298
    [Google Scholar]
  32. Matsui H., Kawahara K., Terakado N., Danbara H. 1990; Nucleotide sequence of a gene encoding a 29 kDa polypeptide in mba region of the virulence plasmid, pKDSC50, of Salmonella choleraesuis. . Nucleic Acids Res 18:1055
    [Google Scholar]
  33. Misra T. K. 1992; Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27:4–16
    [Google Scholar]
  34. Nakatsu C., Ng J., Singh R., Straus N., Wyndham C. 1991; Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci USA 88:8312–8316
    [Google Scholar]
  35. Nash H. A. 1996; Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments. . In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn, vol. 2 , pp. 2363–2376 . Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Osbourn S. E. V., Turner A. K., Grinsted J. 1995; Nucleotide sequence within Tn3926 confirms this as Tn21-like transposable element and provides evidence for the origin of the mer operon carried by plasmid pKLH2. Plasmid 33:65–69
    [Google Scholar]
  37. Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D., Helinski D. R., Schwab H., Stanisich V. A., Thomas C. M. 1994; Complete nucleotide sequence of Birmingham IncP plasmids. Compilation and comparative analysis. J Mol Biol 239:623–663
    [Google Scholar]
  38. Radford A. J., Oliver J., Kelly W. J., Reanney D. C. 1981; Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria. J Bacteriol 147:1110–1112
    [Google Scholar]
  39. Reniero D., Galli E., Barbieri P. 1995; Cloning and comparison of mercury- and organomercurial resistance determinants from a Pseudomonas stutzeri plasmid. Gene 166:77–82
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schottel J., Mandal A., Clark D., Silver S., Hedges R. W. 1974; Volatilization of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251:335–337
    [Google Scholar]
  42. Sherratt D. J., Arciszewska L. K., Blakely G., Colloms S., Grant K., Leslie N., McCulloch R. 1995; Site-specific recombination and circular chromosome segregation. Phil Trans R Soc Lond B 347:37–42
    [Google Scholar]
  43. Shiratori T., Inoue C., Sugawara K., Kusano T., Kitagawa Y. 1989; Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. . J Bacteriol 171:3458–3464
    [Google Scholar]
  44. Siemieniak D. R., Slightom J. L., Chung S.-T. 1990; Nucleotide sequence of Streptomyces fradiae transposable element Tn4556: a class-II transposon related to Tn3 . Gene 86:1–9
    [Google Scholar]
  45. Silver S., Walderhaug M. 1992; Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228
    [Google Scholar]
  46. Smith C. A., Thomas C. M. 1987; Comparison of the organization of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the IncPβ subgroup are closely related. Mol Gen Genet 206:419–427
    [Google Scholar]
  47. Stanisich V. A., Bennett P. M., Richmond M. H. 1977; Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. . J Bacteriol 129:1227–1233
    [Google Scholar]
  48. Stanisich V. A., Arwas R., Bennett P. M., de la Cruz F. 1989; Characterization of Pseudomonas mercury-resistance transposon Tn502, which has a preferred insertion site in RP1. J Gen Microbiol 135:2909–2915
    [Google Scholar]
  49. Stirling C. J., Sztmari G., Stewart G., Smith M. C. M., Sherratt D. J. 1988; The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7:4389–4395
    [Google Scholar]
  50. Taira S., Rhen M. 1990; Nucleotide sequence of mkaD, a virulence-associated gene of Salmonella typhimurium containing variable and constant regions. Gene 93:147–150
    [Google Scholar]
  51. Tamaki S., Dahlbeck D., Staskawicz B., Keen N. T. 1988; Characterization and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea.. J Bacteriol 170:4846–4854
    [Google Scholar]
  52. Tsuda M., Minegishi K.-I., Iino T. 1989; Toluene transposons Tn4651 and Tn4653 are class II transposons. J Bacteriol 171:1386–1393
    [Google Scholar]
  53. Turner A. K., Grinsted J. 1987; DNA sequence of the transposase gene of the new category of class II transposon, Tn2501 . Nucleic Acids Res 15:10049
    [Google Scholar]
  54. Ulrich A., Puehler A. 1994; The new class II transposon Tn163 is plasmid-borne in two unrelated Rhizobium leguminosarum biovar viciae strains. Mol Gen Genet 242:505–516
    [Google Scholar]
  55. Wang Y., Mahler I., Levinson H. S., Halvorson H. O. 1987; Cloning and expression in Escherichia coli of chromosomal mercury resistance genes from a Bacillus sp. J Bacteriol 169:4848–4851
    [Google Scholar]
  56. Watson R., Wheatcroft R. 1991; Nucleotide sequence of Rhizobium meliloti insertion sequence ISRm1: homology to IS2 from Escherichia coli and IS426 from Agrobacterium tumefaciens. . DNA Seq 2:163–172
    [Google Scholar]
  57. Witte W., Green L., Misra T. K., Silver S. 1986; Resistance to mercury and to cadmium in chomosomally resistant Staphylococcus aureus. . Antimicrob Agents Chemother 29:663–669
    [Google Scholar]
  58. Womble D. D., Rownd R. H. 1988; Genetic and physical map of plasmid NR1: comparison with other IncFII antibiotic resistance plasmids. Microbiol Rev 52:433–451
    [Google Scholar]
  59. Yamano Y., Nishikawa T., Komatsu Y. 1993; Cloning and nucleotide sequence of anaerobically induced porin protein E1 (OprE) of Pseudomonas aeruginosa PAO1. Mol Microbiol 8:993–1004
    [Google Scholar]
  60. Yurieva O., Nikiforov V. 1996; Catalytic center quest: comparison of transposases belonging to the Tn3 family reveals an invariant triad of acidic amino acid residues. Biochem Mol Biol Int 38:15–20
    [Google Scholar]
  61. Zharkikh A. A., Rzhetsky A., Yu., Morosov P. S., Sitnikova T. L., Krushkal J. S. 1991; vostorg: a package of microcomputer programs for sequence analysis and construction of phylogenetic trees. Gene 101:251–254
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2549
Loading
/content/journal/micro/10.1099/00221287-143-8-2549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error