1887

Abstract

Summary: NCIB 9867 (strain P25X), which grows on 2,5-xylenol and harbours the plasmid RP4, was mated with a plasmid-free derivative of NCIB 9869, strain RA713, which cannot grow on 2,5-xylenol. Some RA713 transconjugants, initially selected on 2,5-xylenol, were found to carry RP4 plasmids that had acquired additional fragments (designated XIn) which ranged in size from 2 kb to approximately 26 kb. Instability of DNA inserts in RP4::XIn hybrid plasmids was observed. The smallest insert present in a stable RP4::XIn6 hybrid plasmid, termed XIn6, yielded multiple bands when it was used as a probe with digested P25X chromosomal DNA. Sequence analysis of XIn6 led to the discovery of an open reading frame with homology to the maturases of group II introns. The XIn6 insert also exhibited several features characteristic of a group II intron. These included the presence of the consensus sequence GUGYG at the 5′ end and RAY at the 3′ end of the intron. RNA secondary structure modelling of XIn6 also revealed the presence of perfectly conserved domains V and VI. Differences were detected in the XIn6 hybridization profiles of several P25X catabolic mutants that have lost the ability to grow on 2,5-xylenol. In these mutants the loss of 2,5-xylenol degradative ability could be due to genome rearrangements mediated by sequences related to the XIn6 group II intron. This is the first reported group II intron isolated from spp. and the first time that the mobility of a bacterial group II intron has been demonstrated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2833
1997-08-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2833.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2833&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Seidman J. G., Struhl K. 1987 Current Protocols in Molecular Biology New York: John Wiley;
    [Google Scholar]
  3. Bagdasarian M., Lunz R., Ruckert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific purpose cloning vectors. II. Broad-host-range, high-copy-number, RSF1010-derived vectors, and a host–vector system for gene cloning in Pseudomonas . Gene 16:237–247
    [Google Scholar]
  4. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  5. Copertino D. W., Hallick R. B. 1993; Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem Sci 18:467–471
    [Google Scholar]
  6. Datta N., Hedges R. W., Shaw E. J., Sykes R. B., Richmond M. H. 1971; Properties of an R-factor from Pseudomonas aeruginosa . J Bacteriol 108:1244–1249
    [Google Scholar]
  7. Ferat J.-L., Michel F. 1993; Group II self-splicing introns in bacteria. Nature 364:358–361
    [Google Scholar]
  8. Ferat J.-L., Le Gouar M., Michel F. 1994; Multiple group II self-splicing introns in mobile DNA from Escherichia coli . C R Acad Sci 317:141–148
    [Google Scholar]
  9. Hegeman G. D. 1966; Synthesis of enzymes of the mandelate pathway by Pseudomonas putida. 1. Synthesis of enzymes by the wild-type. J Bacteriol 91:1140–1154
    [Google Scholar]
  10. Hopper D. J., Chapman P. J. 1971; Gentisic acid and its 3- and 4-methyl-substituted homologues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Biochem J 122:19–28
    [Google Scholar]
  11. Jain R. K., Bayly R. C., Skurray R. A. 1984; Characterization and physical analysis of a 3,5-xylenol degradative plasmid in Pseudomonas putida . J Gen Microbiol 130:3019–3028
    [Google Scholar]
  12. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  13. Kim J., Fuler J. H., Cecchini G., Mclntire W. S. 1994; Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methyl-hydroxylase from two strains of Pseudomonas putida . J Bacteriol 174:6349–6361
    [Google Scholar]
  14. Knoop V., Brennicke A. 1994; Evidence for a group II intron in Escherichia coli inserted into a highly conserved reading frame associated with mobile DNA sequences. Nucleic Acids Res 22:1167–1171
    [Google Scholar]
  15. Knoop V., Kloska S., Brennicke A. 1994; On the identification of group II introns in nucleotide sequence data. J Mol Biol 242:389–396
    [Google Scholar]
  16. Lambowitz A. M., Belfort M. 1993; Introns as mobile genetic elements. Annu Rev Biochem 62:587–622
    [Google Scholar]
  17. Lanka E., Lunz R., Fürste J. P. 1983; Molecular cloning and mapping of SphI restriction fragments of plasmid RP4. Plasmid 10:303–307
    [Google Scholar]
  18. Michel F., Ferat J.-L. 1995; Structure and activities of group II introns. Annu Rev Biochem 64:435–461
    [Google Scholar]
  19. Michel F., Lang B. F. 1985; Mitochondrial class II introns encode proteins related to reverse transcriptases of retroviruses. Nature 316:641–643
    [Google Scholar]
  20. Michel F., Umesono K., Ozeki H. 1989; Comparative and functional anatomy of group II catalytic introns – a review. Gene 82:5–30
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Mills D. A., McKay L. L., Dunny G. M. 1996; Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol 178:3531–3538
    [Google Scholar]
  23. Mohr G., Perlman P. S., Lambowitz A. M. 1993; Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res 21:4991–4997
    [Google Scholar]
  24. Moran J. V., Zimmerly S., Eskes R., Kennell J. C., Lambowitz A. M., Burtow R. A., Perlman P. S. 1995; Mobile group II introns of yeast mitochondrial DNA are novel site-specific retroelements. Mol Cell Biol 15:2828–2838
    [Google Scholar]
  25. Mueller M. W., Allmaier M., Eskes R., Schweyen R. J. 1993; Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature 366:174–176
    [Google Scholar]
  26. Mullany P., Pallen M., Wilks M., Stephen J. R., Tabaqchali S. 1996; A group II intron in a conjugative transposon from the gram-positive bacterium Clostridium difficile . Gene 174:145–150
    [Google Scholar]
  27. Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D., Helinski D. R., Schwab H., Stanisich V. A., Thomas C. M. 1994; Complete nucleotide sequence of Birmingham IncP-α plasmids: compilation and comparative analysis. J Mol Biol 239:623–663
    [Google Scholar]
  28. Poh C. L., Bayly R. C. 1980; Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway. J Bacteriol 143:59–69
    [Google Scholar]
  29. Poh C. L., Bayly R. C. 1988; Regulation of isofunctional enzymes in Pseudomonas alcaligenes mutants defective in the gentisate pathway. J Appl Bacteriol 64:451–458
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sellem C. H., Lecellier G., Belcour L. 1993; Transposition of a group II intron. Nature 366:176–178
    [Google Scholar]
  32. Shearman C., Godon J.-J., Gasson M. 1996; Splicing of a group II intron in a functional transfer gene of Lactococcus lactis . Mol Microbiol 21:45–53
    [Google Scholar]
  33. Tham J. M. 1993; Genetic analysis of Pseudomonas alcaligenes NCIB 9867. . PhD thesis National University of Singapore;
    [Google Scholar]
  34. Xiong Y., Eickbush T. H. 1990; Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362
    [Google Scholar]
  35. Yang J., Zimmerly S., Perlman P. S., Lambowitz A. M. 1996; Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381:332–335
    [Google Scholar]
  36. Yanisch-Perron G., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  37. Zimmerly S., Guo H., Perlman P. S., Lambowitz A. M. 1995; Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–554
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2833
Loading
/content/journal/micro/10.1099/00221287-143-8-2833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error