1887

Abstract

Summary: The DNA regions upstream from the genes encoding polypeptides of subsp. larvicidal crystals contain sequences with similarities to the box of (or ‘OA’ box) and the promoter recognized by the σ-associated RNA polymerase of . Expression of transcriptional fusions was analysed in various genetic backgrounds. The early transcription of the toxin genes was not sporulation-dependent, whereas the late-stage expression at was σ-dependent. Primer extension analysis confirmed that the -and -type toxin genes were weakly transcribed during the transition phase; expression analysis of a '-lacZ transcriptional fusion in sporulation mutants confirmed the involvement of the σ-RNA polymerase. Primer extension analysis showed that in subsp. , the and gene transcription observed at the end of the growth stage was turned off at the beginning of the sporulation phase. The DNA region located upstream from the gene promoter including the putative ‘OA’ box was deleted. This led to a derepression of the expression of the operon. These results suggest that the and toxin genes of subsp. are transcribed during the transition phase by the RNA polymerase associated with the σ factor and are subject to SpoOA repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2743
1997-08-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2743.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2743&mimeType=html&fmt=ahah

References

  1. Adams L. F., Brown K. L., Whiteley H. R. 1991; Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J Bacteriol 173:3846–3854
    [Google Scholar]
  2. Agaisse H., Lereclus D. 1994; Expression of the cryIIIA toxin gene of Bacillus thuringiensis is not dependent on sporulation-specific sigma factor and is increased in a spo0A mutant of B. . subtilis. J Bacteriol 6:4734–4741
    [Google Scholar]
  3. Agaisse H., Lereclus D. 1995; How does Bacillus thuringiensis produce so much insecticidal crystal protein?. J Bacteriol 177:6027–6032
    [Google Scholar]
  4. Baldus J. M., Green B. D., Youngman P., Moran C. P. Jr 1994; Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol 176:296–306
    [Google Scholar]
  5. Baldus J. M., Buckner C. M., Moran C. P. Jr 1995; Evidence that the transcriptional activator Spo0A interacts with two sigma factors in Bacillus subtilis . Mol Microbiol 17:281–290
    [Google Scholar]
  6. Baum J. A., Malvar T. 1995; Regulation of insecticidal crystal protein production in Bacillus thuringiensis. . Mol Microbiol 18:1–12
    [Google Scholar]
  7. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  8. Bravo A., Agaisse H., Salamitou S., Lereclus D. 1996; Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. . Mol Gen Genet 250:734–741
    [Google Scholar]
  9. Brown K. L., Whiteley H. R. 1988; Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc Natl Acad Sci USA 85:4166–4170
    [Google Scholar]
  10. Brown K. L., Whiteley H. R. 1990; Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J Bacteriol 172:6682–6688
    [Google Scholar]
  11. Calogero S., Gardan R., Glaser P., Schweizer J., Rapoport G., Débarbouillé M. 1994; RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. J. Bacteriol 176:1234–1241
    [Google Scholar]
  12. Delécluse A., Poncet S., Klier A., Rapoport G. 1993; Expression of cryIVA and cryIVB genes, independently or in combination, in a crystal minus strain of Bacillus thuringiensis subsp. israelensis. . Appl Environ Microbiol 59:3922–3927
    [Google Scholar]
  13. Dervyn E., Poncet S., Klier A., Rapoport G. 1995; Transcriptional regulation of Bacillus thuringiensis subsp. israelensis cryIVD gene operon. J Bacteriol 177:2283–2291
    [Google Scholar]
  14. Donovan W. P., Dankocsik C., Gilbert M. P. 1988; Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. . J Bacteriol 170:4732–4738
    [Google Scholar]
  15. Errington J. 1993; Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33
    [Google Scholar]
  16. Glatron M. F., Rapoport G. 1972; Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie 54:1291–1301
    [Google Scholar]
  17. Haldenwang W. G. 1995; The sigma factors of Bacillus subtilis. . Microbiol Rev 59:1–30
    [Google Scholar]
  18. Lecadet M.-M., Blondel M.-O., Ribier J. 1980; Generalized transduction in Bacillus thuringiensis var. berliner 1715 using bacteriophage CP54Ber. J Gen Microbiol 121:203–212
    [Google Scholar]
  19. Lereclus D., Arantes O., Chaufaux J., Lecadet M.-M. 1989; Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis . FEMS Microbiol Lett 60:211–218
    [Google Scholar]
  20. Leredus D., Agaisse H., Gominet M., Chaufaux J. 1994; Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Bio/Technology 13:67–71
    [Google Scholar]
  21. Malvar T., Baum J. A. 1994; Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. . J Bacteriol 176:4750–4753
    [Google Scholar]
  22. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Msadek T., Kunst F., Henner D., Klier A., Rapoport G., Dedonder R. 1990; Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory gene and analysis of mutations in degS and degU. . J Bacteriol 172:824–834
    [Google Scholar]
  24. Perego M., Spiegelman G. B., Hoch J. A. 1988; Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. . Mol Microbiol 2:689–699
    [Google Scholar]
  25. Poncet S., Deléluse A., Klier A., Rapoport G. 1995a; Evaluation of synergistic interactions between the CryIVA, CryIVB and CryIVD toxic components of Bacillus thuringiensis subsp.israelensis crystals. J Invertebr Pathol 66:131–135
    [Google Scholar]
  26. Poncet S., Dervyn E., Klier A., Rapoport G. 1995b; Regulation of the cryIVD operon in Bacillus thuringiensis subsp. israelensis. . In 8th International Conference on Bacilli (Abstracts), p. 58 Stanford, CA, USA;
    [Google Scholar]
  27. Porter A. G., Davidson E. W., Liu J.-W. 1993; Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57:838–861
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  29. Strauch M., Webb V., Spiegelman G., Hoch J. A. 1990; The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci USA 87:1801–1805
    [Google Scholar]
  30. Waalwijk C., Dullemans A. M., vanWorkum M. E. S., Visser B. 1985; Molecular cloning and the nucleotide sequence of the M r 28000 crystal protein gene of Bacillus thuringiensis subsp. israelensis . Nucleic Acids Res 13:8207–8217
    [Google Scholar]
  31. Ward E. S., Ellar D. J. 1986; Bacillus thuringiensis var. israelensis δ-endotoxin. Nucleotide sequence and characterization of the transcripts in Bacillus thuringiensis and Escherichia coli. . J Mol Biol 191:1–11
    [Google Scholar]
  32. Weinrauch Y., Msadek T., Kunst F., Dubnau D. 1991; Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. . J Bacteriol 173:5685–5693
    [Google Scholar]
  33. Weir J., Dubnau E., Ramakrishna N., Smith I. 1984; Bacillus subtilis spo0H gene. J Bacteriol 157:405–412
    [Google Scholar]
  34. Weir J., Predich M., Dubnau E., Nair G., Smith I. 1991; Regulation of spo0H, a gene coding for the Bacillus subtilis σH factor. J Bacteriol 173:521–529
    [Google Scholar]
  35. Wong H. C., Schnepf H. E., Whiteley H. R. 1983; Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem 258:1960–1967
    [Google Scholar]
  36. Yoshisue H., Fukada T., Yoshida K.-I., Sen K., Kurosawa S.-I., Sakai H., Komano T. 1993; Transcriptional regulation of Bacillus thuringiensis subsp. israelensis mosquito larvicidal crystal protein gene cryIVA. . J Bacteriol 175:2750–2753
    [Google Scholar]
  37. Yoshisue H., Nishimoto T., Sakai H., Komano T. 1994; Identification of a promoter for the crystal protein-encoding gene cryIVB from Bacillus thuringiensis subsp. israelensis . Gene 137:247–251
    [Google Scholar]
  38. Yoshisue H., Ihara K., Nishimoto T., Sakai H., Komano T. Expression of the genes for insecticidal crystal proteins in Bacillus thuringiensis: cryIVA, not cryIVB, is transcribed by RNA polymerase containing σH and that containing σE . FEMS Microbiol Lett 127:65–72
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2743
Loading
/content/journal/micro/10.1099/00221287-143-8-2743
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error