- Volume 97, Issue 11, 2016
Volume 97, Issue 11, 2016
- Insect
-
- DNA Viruses
-
-
The Autographa californica multiple nucleopolyhedrovirus Ac132 plays a role in nuclear entry
More LessA recent study found that the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac132 is a nucleocapsid-associated protein and required for budded virion (BV) production. We therefore initiated experiments aimed at understanding how Ac132 is involved in AcMNPV infection. An 80 bp region of ac132 was replaced with a chloramphenicol resistance gene to construct vAc132KO. Transfection of vAc132KO into Sf9 cells resulted in a single-cell infection phenotype, consistent with findings reported in a previous study. Interestingly, BVs were observable in the supernatants, and the BV production in the supernatant was comparable with that present in supernatants from a WT control. These results suggest that the ac132 deletion does not affect the egress of nucleocapsids from the transfected cells to form BVs, but the BVs are non-infectious. Transfection with DNA extracted from vAc132KO BVs could establish infection in Sf9 cells, indicating that the deletion does not affect the integrity of the viral genomic DNA in non-infectious progeny BVs. To monitor the traffic of nucleocapsids without Ac132, two mCherry proteins were fused with the major capsid protein VP39 to construct vAc132KO : 2mC. Using confocal microscopy, we observed that the nucleocapsids of vAc132KO : 2mC could not enter the nucleus and instead remained docked at the nuclear membrane. This study provides a new understanding of the nuclear entry of baculoviruses.
-
-
-
Identification of Bombyx mori nucleopolyhedrovirus bm58a as an auxiliary gene and its requirement for cell lysis and larval liquefaction
More LessBombyx mori nucleopolyhedrovirus orf58a (bm58a) and its homologues are highly conserved in genomes of all sequenced group I alphabaculoviruses and its function is still unknown. Transcriptional analysis revealed that bm58a is a very late gene initiated from a late transcriptional start motif TAAG. To examine its role in the virus, a bm58a knockout virus (vBmbm-58a-KO-PH-GFP) was generated through homologous recombination in Escherichia coli. Analysis of fluorescence microscopy, titration assays and electron microscopy examination showed that the deletion of bm58a did not affect viral replication and occlusion bodies formation in vitro, indicating that bm58a is not required for viral propagation. However, vBmbm-58a-KO-PH-GFP did not result in cell lysis when wild-type virus infected cells began to lyse, and the vBmbm-58a-KO-PH-GFP infected cells remained intact until 2 weeks post-infection. Quantification of polyhedra release from cells confirmed this observation. Accordingly, though deletion of bm58a did not reduce Bombyx mori nucleopolyhedrovirus infectivity in vivo in bioassays, it did significantly disrupt the larval liquefaction, reducing the level of polyhedra release from infected host. Immunofluorescence analysis demonstrated that Bm58a was predominantly localized on the cellular membrane at the late stage of infection, which may contribute to its function of facilitating cell lysis and larval liquefaction. Our results suggest that although bm58a is not essential for viral propagation as an auxiliary gene, it is a key factor of virus-induced cell lysis and larval liquefaction in vitro and in vivo.
-
- Plant
-
- RNA Viruses
-
-
Host-specific accumulation and temperature effects on the generation of dimeric viral RNA species derived from the S-RNA of members of the Tospovirus genus
Polygonum ringspot virus (PolRSV) is a recently characterized Tospovirus reported in Italy. Northern blot analyses of PolRSV infections in Nicotiana benthamiana and tomato plants showed that a viral RNA species with nearly twice the length of the Small genomic RNA (S-RNA) accumulated abundantly in the former host, but was not detected in the latter. Additional assays confirmed that biogenesis of this novel RNA species was common to all PolRSV isolates tested and also to an isolate of Tomato spotted wilt virus (TSWV). Given its size, we hypothesized that the novel RNA species was a dimer molecule and we confirmed this hypothesis by RNA sequencing (RNAseq) analysis and reverse transcription (RT)-PCR of putative predicted dimer junction sites in RNA extracts of N. benthamiana challenged with PolRSV isolates Plg6 and Plg13/2. We also confirmed that these molecules are derived from head-to-tail dimers and often contain deletions at their junction sites. We named these novel molecules imperfect dimer RNAs (IMPD-RNAs). PolRSV IMPD-RNAs systemic accumulation in a range of host plants was restricted to N. benthamiana and Nicotiana occidentalis. Notably, IMPD-RNAs accumulation was modulated by temperature and their generation was restricted to late stages of systemic infection (12 days post-inoculation) in N. benthamiana. Differently from all other PolRSV isolates used in this study, Plg13/2 generated more IMPD-RNAs coupled with low amounts of genomic S-RNA and maintained them even at 18 °C, besides having lost the ability to infect tomato plants. This is the first characterization of S-RNA dimers for Tospovirus, and of occurrence of dimers of genomic segments at the whole organism level for Bunyaviridae.
-
-
-
A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability
Allele mining on susceptibility factors offers opportunities to find new sources of resistance among crop wild relatives for breeding purposes. As a proof of concept, we used available RNAseq data to investigate polymorphisms among the four tomato genes encoding translation initiation factors [eIF4E1 and eIF4E2, eIFiso4E and the related gene new cap-binding protein(nCBP)] to look for new potential resistance alleles to potyviruses. By analysing polymorphism among RNAseq data obtained for 20 tomato accessions, 10 belonging to the cultivated type Solanum lycopersicum and 10 belonging to the closest related wild species Solanum pimpinellifolium, we isolated one new eIF4E1 allele, in the S. pimpinellifolium LA0411 accession, which encodes a potential new resistance allele, mainly due to a polymorphism associated with an amino acid change within eIF4E1 region II. We confirmed that this new allele, pot12 , is indeed associated with resistance to potato virus Y, although with a restricted resistance spectrum and a very low durability potential. This suggests that mutations occurring in eIF4E region II only may not be sufficient to provide efficient and durable resistance in plants. However, our study emphasizes the opportunity brought by RNAseq data to mine for new resistance alleles. Moreover, this approach could be extended to seek for putative new resistance alleles by screening for variant forms of susceptibility genes encoding plant host proteins known to interact with viral proteins.
-
- DNA Viruses
-
-
Unusual genomic features of a badnavirus infecting mulberry
Mulberry badnavirus 1 (MBV1) has been characterized as the aetiological agent of a disease observed on a mulberry tree in Lebanon (accession L34). A small RNA next-generation sequencing library was prepared and analysed from L34 extract, and these data together with genome walking experiments have been used to obtain the full-length virus sequence. Uniquely among badnaviruses, the MBV1 sequence encodes a single ORF containing all the conserved pararetrovirus motifs. Two genome sizes (6 kb and 7 kb) were found to be encapsidated in infected plants, the shortest of which shares 98.95 % sequence identity with the full L34 genome. In the less-than-full-length deleted genome, the translational frame for the replication domains was conserved, but the particle morphology, observed under electron microscopy, was somehow altered. Southern blot hybridization confirmed the coexistence of the two genomic forms in the original L34 accession, as well as the absence of cointegration in the plant genome. Both long and deleted genomes were cloned and proved to be infectious in mulberry. Differently from other similar nuclear-replicating viruses or viroids, the characterization of the MBV1-derived small RNAs showed a reduced amount of the 24-mer class size.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)