1887

Abstract

Polygonum ringspot virus (PolRSV) is a recently characterized Tospovirus reported in Italy. Northern blot analyses of PolRSV infections in Nicotiana benthamiana and tomato plants showed that a viral RNA species with nearly twice the length of the Small genomic RNA (S-RNA) accumulated abundantly in the former host, but was not detected in the latter. Additional assays confirmed that biogenesis of this novel RNA species was common to all PolRSV isolates tested and also to an isolate of Tomato spotted wilt virus (TSWV). Given its size, we hypothesized that the novel RNA species was a dimer molecule and we confirmed this hypothesis by RNA sequencing (RNAseq) analysis and reverse transcription (RT)-PCR of putative predicted dimer junction sites in RNA extracts of N. benthamiana challenged with PolRSV isolates Plg6 and Plg13/2. We also confirmed that these molecules are derived from head-to-tail dimers and often contain deletions at their junction sites. We named these novel molecules imperfect dimer RNAs (IMPD-RNAs). PolRSV IMPD-RNAs systemic accumulation in a range of host plants was restricted to N. benthamiana and Nicotiana occidentalis. Notably, IMPD-RNAs accumulation was modulated by temperature and their generation was restricted to late stages of systemic infection (12 days post-inoculation) in N. benthamiana. Differently from all other PolRSV isolates used in this study, Plg13/2 generated more IMPD-RNAs coupled with low amounts of genomic S-RNA and maintained them even at 18 °C, besides having lost the ability to infect tomato plants. This is the first characterization of S-RNA dimers for Tospovirus, and of occurrence of dimers of genomic segments at the whole organism level for Bunyaviridae.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000598
2016-11-10
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/3051.html?itemId=/content/journal/jgv/10.1099/jgv.0.000598&mimeType=html&fmt=ahah

References

  1. Albariño C. G., Price B. D., Eckerle L. D., Ball L. A..( 2001;). Characterization and template properties of RNA dimers generated during flock house virus RNA replication. . Virology289:269–282. [CrossRef][PubMed]
    [Google Scholar]
  2. Altenbach S. B., Howell S. H..( 1981;). Identification of a satellite RNA associated with turnip crinkle virus. . Virology112:25–33. [CrossRef][PubMed]
    [Google Scholar]
  3. Axtell M. J..( 2013;). ShortStack: comprehensive annotation and quantification of small RNA genes. . RNA19:740–751. [CrossRef][PubMed]
    [Google Scholar]
  4. Billecocq A., Vialat P., Bouloy M..( 1996;). Persistent infection of mammalian cells by Rift Valley fever virus. . J Gen Virol77:3053–3062. [CrossRef][PubMed]
    [Google Scholar]
  5. Bolger A. M., Lohse M., Usadel B..( 2014;). Trimmomatic: a flexible trimmer for Illumina sequence data. . Bioinformatics30:2114–2120. [CrossRef][PubMed]
    [Google Scholar]
  6. Carpenter C. D., Cascone P. J., Simon A. E..( 1991;). Formation of multimers of linear satellite RNAs. . Virology183:586–594. [CrossRef][PubMed]
    [Google Scholar]
  7. Cascone P. J., Carpenter C. D., Li X. H., Simon A. E..( 1990;). Recombination between satellite RNAs of turnip crinkle virus. . EMBO J9:1709–1715.[PubMed]
    [Google Scholar]
  8. Ciuffo M., Tavella L., Pacifico D., Masenga V., Turina M..( 2008;). A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). . Arch Virol153:2059–2068. [CrossRef][PubMed]
    [Google Scholar]
  9. Ciuffo M., Mautino G. C., Bosco L., Turina M., Tavella L..( 2010;). Identification of Dictyothrips betae as the vector of Polygonum ring spot virus. . Ann Appl Biol157:299–307. [CrossRef]
    [Google Scholar]
  10. de Haan P., Wagemakers L., Peters D., Goldbach R..( 1989;). Molecular cloning and terminal sequence determination of the S and M RNAs of tomato spotted wilt virus. . J Gen Virol70:3469–3473. [CrossRef][PubMed]
    [Google Scholar]
  11. de Haan P., Wagemakers L., Peters D., Goldbach R..( 1990;). The S RNA segment of tomato spotted wilt virus has an ambisense character. . J Gen Virol71:1001–1007. [CrossRef][PubMed]
    [Google Scholar]
  12. de Haan P., Kormelink R., de Oliveira Resende R., van Poelwijk F., Peters D., Goldbach R..( 1991;). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. . J Gen Virol72:2207–2216. [CrossRef][PubMed]
    [Google Scholar]
  13. Fernandez-Pozo N., Menda N., Edwards J. D., Saha S., Tecle I. Y., Strickler S. R., Bombarely A., Fisher-York T., Pujar A. et al.( 2015;). The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. . Nucleic Acids Res43:D1036–1041. [CrossRef][PubMed]
    [Google Scholar]
  14. Finnen R. L., Rochon D. M..( 1993;). Sequence and structure of defective interfering RNAs associated with cucumber necrosis virus infections. . J Gen Virol74:1715–1720. [CrossRef][PubMed]
    [Google Scholar]
  15. Flores R., Grubb D., Elleuch A., Nohales M. Á., Delgado S., Gago S..( 2011;). Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. . RNA Biol8:200–206. [CrossRef][PubMed]
    [Google Scholar]
  16. Geerts-Dimitriadou C., Lu Y. Y., Geertsema C., Goldbach R., Kormelink R..( 2012;). Analysis of the tomato spotted wilt virus ambisense S RNA-encoded hairpin structure in translation. . PLoS One7:e31013. [CrossRef][PubMed]
    [Google Scholar]
  17. Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., Fan L., Raychowdhury R. et al.( 2011;). Full-length transcriptome assembly from RNA-Seq data without a reference genome. . Nat Biotechnol29:644–652. [CrossRef][PubMed]
    [Google Scholar]
  18. Inoue-Nagata A. K., Kormelink R., Nagata T., Kitajima E. W., Goldbach R., Peters D..( 1997;). Effects of temperature and host on the generation of tomato spotted wilt virus defective interfering RNAs. . Phytopathology87:1168–1173. [CrossRef][PubMed]
    [Google Scholar]
  19. Inoue-Nagata A. K., Kormelink R., Sgro J. Y., Nagata T., Kitajima E. W., Goldbach R., Peters D..( 1998;). Molecular characterization of tomato spotted Wilt virus defective interfering RNAs and detection of truncated L proteins. . Virology248:342–356. [CrossRef][PubMed]
    [Google Scholar]
  20. Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T. L..( 2008;). NCBI blast: a better web interface. . Nucleic Acids Res36:W5–9. [CrossRef][PubMed]
    [Google Scholar]
  21. Kikkert M., Van Lent J., Storms M., Bodegom P., Kormelink R., Goldbach R..( 1999;). Tomato spotted wilt virus particle morphogenesis in plant cells. . J Virol73:2288–2297.[PubMed]
    [Google Scholar]
  22. Kormelink R., Storms M., Van Lent J., Peters D., Goldbach R..( 1994;). Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. . Virology200:56–65. [CrossRef][PubMed]
    [Google Scholar]
  23. Kutnjak D., Rupar M., Gutierrez-Aguirre I., Curk T., Kreuze J. F., Ravnikar M..( 2015;). Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population. . J Virol89:4760–4769. [CrossRef][PubMed]
    [Google Scholar]
  24. Langmead B., Salzberg S. L..( 2012;). Fast gapped-read alignment with Bowtie 2. . Nat Methods9:357–359. [CrossRef][PubMed]
    [Google Scholar]
  25. Li C.-X., Shi M., Tian J.-H., Lin X.-D., Kang Y.-J., Chen L.-J., Qin X.-C., Xu J., Holmes E. C., Zhang Y.-Z..( 2015;). Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. . eLife4:1–26. [CrossRef]
    [Google Scholar]
  26. Margaria P., Ciuffo M., Pacifico D., Turina M..( 2007;). Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. . Mol Plant Microbe Interact20:547–558. [CrossRef][PubMed]
    [Google Scholar]
  27. Margaria P., Bosco L., Vallino M., Ciuffo M., Mautino G. C., Tavella L., Turina M..( 2014a;). The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. . J Virol88:5788–5802. [CrossRef][PubMed]
    [Google Scholar]
  28. Margaria P., Miozzi L., Ciuffo M., Pappu H., Turina M..( 2014b;). The complete genome sequence of polygonum ringspot virus. . Arch Virol159:3149–3152. [CrossRef][PubMed]
    [Google Scholar]
  29. Margaria P., Miozzi L., Ciuffo M., Rosa C., Axtell M. J., Pappu H. R., Turina M..( 2016;). Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. . Virus Res211:38–45. [CrossRef][PubMed]
    [Google Scholar]
  30. Nagata T., Inoue-Nagata A. K., Prins M., Goldbach R., Peters D..( 2000;). Impeded thrips transmission of defective tomato spotted wilt virus isolates. . Phytopathology90:454–459. [CrossRef][PubMed]
    [Google Scholar]
  31. Patel A. H., Elliott R. M..( 1992;). Characterization of Bunyamwera virus defective interfering particles. . J Gen Virol73:389–396. [CrossRef][PubMed]
    [Google Scholar]
  32. Plyusnin A., Beaty B. J., Elliott R. M., Goldbach R., Kormelink R., Lundkvist Å., Schmaljohn C. S., Tesh R. B..( 2011;). Bunyaviridae. . In Virus Taxonomy: Classification and Nomenclature Of Viruses - Ninth Report of the International Committee on Taxonomy Of Viruses. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. London:: Elsevier;.
    [Google Scholar]
  33. Resende R. O., de Haan P., de Avila A. C., Kitajima E. W., Kormelink R., Goldbach R., Peters D..( 1991;). Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. . J Gen Virol72:2375–2383. [CrossRef][PubMed]
    [Google Scholar]
  34. Resende R. O., de Haan P., van de Vossen E., de Avila A. C., Goldbach R., Peters D..( 1992;). Defective interfering L RNA segments of tomato spotted wilt virus retain both virus genome termini and have extensive internal deletions. . J Gen Virol73:2509–2516. [CrossRef][PubMed]
    [Google Scholar]
  35. Ribeiro D., Foresti O., Denecke J., Wellink J., Goldbach R., Kormelink R. J..( 2008;). Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgi-derived pleomorphic membrane structures in plant cells. . J Gen Virol89:1811–1818. [CrossRef][PubMed]
    [Google Scholar]
  36. Ribeiro D., Borst J. W., Goldbach R., Kormelink R..( 2009;). Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta. . Virology383:121–130. [CrossRef][PubMed]
    [Google Scholar]
  37. Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., Mesirov J. P..( 2011;). Integrative genomics viewer. . Nat Biotechnol29:24–26. [CrossRef][PubMed]
    [Google Scholar]
  38. Rossi M., Vallino M., Abbà S., Ciuffo M., Balestrini R., Genre A., Turina M..( 2015;). The importance of the KR-rich region of the coat protein of ourmia melon virus for host specificity, tissue tropism, and interference with antiviral defense. . Mol Plant Microbe Interact28: 30–41. [CrossRef][PubMed]
    [Google Scholar]
  39. Routh A., Johnson J. E..( 2014;). Discovery of functional genomic motifs in viruses with ViReMa–a Virus Recombination Mapper–for analysis of next-generation sequencing data. . Nucleic Acids Res42:e11. [CrossRef][PubMed]
    [Google Scholar]
  40. Routh A., Ordoukhanian P., Johnson J. E..( 2012;). Nucleotide-resolution profiling of RNA recombination in the encapsidated genome of a eukaryotic RNA virus by next-generation sequencing. . J Mol Biol424:257–269. [CrossRef][PubMed]
    [Google Scholar]
  41. Sambrook J..( 2001;). Molecular Cloning: A Laboratory Manual/Joseph Sambrook. Edited by Russell D. W.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  42. Scallan M. F., Elliott R. M..( 1992;). Defective RNAs in mosquito cells persistently infected with Bunyamwera virus. . J Gen Virol73:53–60. [CrossRef][PubMed]
    [Google Scholar]
  43. Simon A. E., Engel H., Johnson R. P., Howell S. H..( 1988;). Identification of regions affecting virulence, RNA processing and infectivity in the virulent satellite of turnip crinkle virus. . EMBO J7:2645–2651.[PubMed]
    [Google Scholar]
  44. Steinecke P., Heinze C., Oehmen E., Adam G., Schreier P. H..( 1998;). Early events of tomato spotted wilt transcription and replication in protoplasts. . New Microbiol21:263–268.[PubMed]
    [Google Scholar]
  45. Takeda A., Sugiyama K., Nagano H., Mori M., Kaido M., Mise K., Tsuda S., Okuno T..( 2002;). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. . FEBS Lett532:75–79. [CrossRef][PubMed]
    [Google Scholar]
  46. Thorvaldsdóttir H., Robinson J. T., Mesirov J. P..( 2013;). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. . Brief Bioinform14:178–192. [CrossRef][PubMed]
    [Google Scholar]
  47. Tomassoli L., Tiberini A., Masenga V., Vicchi V., Turina M..( 2009;). Characterization of Iris yellow spot virus isolates from onion crops in Northern Italy. . J Plant Pathol91:733–739.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000598
Loading
/content/journal/jgv/10.1099/jgv.0.000598
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error