1887

Abstract

(PolRSV) is a recently characterized reported in Italy. Northern blot analyses of PolRSV infections in and tomato plants showed that a viral RNA species with nearly twice the length of the Small genomic RNA (S-RNA) accumulated abundantly in the former host, but was not detected in the latter. Additional assays confirmed that biogenesis of this novel RNA species was common to all PolRSV isolates tested and also to an isolate of (TSWV). Given its size, we hypothesized that the novel RNA species was a dimer molecule and we confirmed this hypothesis by RNA sequencing (RNAseq) analysis and reverse transcription (RT)-PCR of putative predicted dimer junction sites in RNA extracts of challenged with PolRSV isolates Plg6 and Plg13/2. We also confirmed that these molecules are derived from head-to-tail dimers and often contain deletions at their junction sites. We named these novel molecules imperfect dimer RNAs (IMPD-RNAs). PolRSV IMPD-RNAs systemic accumulation in a range of host plants was restricted to and . Notably, IMPD-RNAs accumulation was modulated by temperature and their generation was restricted to late stages of systemic infection (12 days post-inoculation) in . Differently from all other PolRSV isolates used in this study, Plg13/2 generated more IMPD-RNAs coupled with low amounts of genomic S-RNA and maintained them even at 18 °C, besides having lost the ability to infect tomato plants. This is the first characterization of S-RNA dimers for , and of occurrence of dimers of genomic segments at the whole organism level for .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000598
2016-11-10
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/3051.html?itemId=/content/journal/jgv/10.1099/jgv.0.000598&mimeType=html&fmt=ahah

References

  1. Albariño C. G., Price B. D., Eckerle L. D., Ball L. A. 2001; Characterization and template properties of RNA dimers generated during flock house virus RNA replication. Virology 289:269–282 [View Article][PubMed]
    [Google Scholar]
  2. Altenbach S. B., Howell S. H. 1981; Identification of a satellite RNA associated with turnip crinkle virus. Virology 112:25–33 [View Article][PubMed]
    [Google Scholar]
  3. Axtell M. J. 2013; ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751 [View Article][PubMed]
    [Google Scholar]
  4. Billecocq A., Vialat P., Bouloy M. 1996; Persistent infection of mammalian cells by Rift Valley fever virus. J Gen Virol 77:3053–3062 [View Article][PubMed]
    [Google Scholar]
  5. Bolger A. M., Lohse M., Usadel B. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  6. Carpenter C. D., Cascone P. J., Simon A. E. 1991; Formation of multimers of linear satellite RNAs. Virology 183:586–594 [View Article][PubMed]
    [Google Scholar]
  7. Cascone P. J., Carpenter C. D., Li X. H., Simon A. E. 1990; Recombination between satellite RNAs of turnip crinkle virus. EMBO J 9:1709–1715[PubMed]
    [Google Scholar]
  8. Ciuffo M., Tavella L., Pacifico D., Masenga V., Turina M. 2008; A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Arch Virol 153:2059–2068 [View Article][PubMed]
    [Google Scholar]
  9. Ciuffo M., Mautino G. C., Bosco L., Turina M., Tavella L. 2010; Identification of Dictyothrips betae as the vector of Polygonum ring spot virus. Ann Appl Biol 157:299–307 [View Article]
    [Google Scholar]
  10. de Haan P., Wagemakers L., Peters D., Goldbach R. 1989; Molecular cloning and terminal sequence determination of the S and M RNAs of tomato spotted wilt virus. J Gen Virol 70:3469–3473 [View Article][PubMed]
    [Google Scholar]
  11. de Haan P., Wagemakers L., Peters D., Goldbach R. 1990; The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71:1001–1007 [View Article][PubMed]
    [Google Scholar]
  12. de Haan P., Kormelink R., de Oliveira Resende R., van Poelwijk F., Peters D., Goldbach R. 1991; Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72:2207–2216 [View Article][PubMed]
    [Google Scholar]
  13. Fernandez-Pozo N., Menda N., Edwards J. D., Saha S., Tecle I. Y., Strickler S. R., Bombarely A., Fisher-York T., Pujar A. et al. 2015; The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–1041 [View Article][PubMed]
    [Google Scholar]
  14. Finnen R. L., Rochon D. M. 1993; Sequence and structure of defective interfering RNAs associated with cucumber necrosis virus infections. J Gen Virol 74:1715–1720 [View Article][PubMed]
    [Google Scholar]
  15. Flores R., Grubb D., Elleuch A., Nohales M. Á., Delgado S., Gago S. 2011; Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol 8:200–206 [View Article][PubMed]
    [Google Scholar]
  16. Geerts-Dimitriadou C., Lu Y. Y., Geertsema C., Goldbach R., Kormelink R. 2012; Analysis of the tomato spotted wilt virus ambisense S RNA-encoded hairpin structure in translation. PLoS One 7:e31013 [View Article][PubMed]
    [Google Scholar]
  17. Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., Fan L., Raychowdhury R. et al. 2011; Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652 [View Article][PubMed]
    [Google Scholar]
  18. Inoue-Nagata A. K., Kormelink R., Nagata T., Kitajima E. W., Goldbach R., Peters D. 1997; Effects of temperature and host on the generation of tomato spotted wilt virus defective interfering RNAs. Phytopathology 87:1168–1173 [View Article][PubMed]
    [Google Scholar]
  19. Inoue-Nagata A. K., Kormelink R., Sgro J. Y., Nagata T., Kitajima E. W., Goldbach R., Peters D. 1998; Molecular characterization of tomato spotted Wilt virus defective interfering RNAs and detection of truncated L proteins. Virology 248:342–356 [View Article][PubMed]
    [Google Scholar]
  20. Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T. L. 2008; NCBI blast: a better web interface. Nucleic Acids Res 36:W5–9 [View Article][PubMed]
    [Google Scholar]
  21. Kikkert M., Van Lent J., Storms M., Bodegom P., Kormelink R., Goldbach R. 1999; Tomato spotted wilt virus particle morphogenesis in plant cells. J Virol 73:2288–2297[PubMed]
    [Google Scholar]
  22. Kormelink R., Storms M., Van Lent J., Peters D., Goldbach R. 1994; Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56–65 [View Article][PubMed]
    [Google Scholar]
  23. Kutnjak D., Rupar M., Gutierrez-Aguirre I., Curk T., Kreuze J. F., Ravnikar M. 2015; Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population. J Virol 89:4760–4769 [View Article][PubMed]
    [Google Scholar]
  24. Langmead B., Salzberg S. L. 2012; Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359 [View Article][PubMed]
    [Google Scholar]
  25. Li C.-X., Shi M., Tian J.-H., Lin X.-D., Kang Y.-J., Chen L.-J., Qin X.-C., Xu J., Holmes E. C., Zhang Y.-Z. 2015; Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4:1–26 [View Article]
    [Google Scholar]
  26. Margaria P., Ciuffo M., Pacifico D., Turina M. 2007; Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. Mol Plant Microbe Interact 20:547–558 [View Article][PubMed]
    [Google Scholar]
  27. Margaria P., Bosco L., Vallino M., Ciuffo M., Mautino G. C., Tavella L., Turina M. 2014a; The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis . J Virol 88:5788–5802 [View Article][PubMed]
    [Google Scholar]
  28. Margaria P., Miozzi L., Ciuffo M., Pappu H., Turina M. 2014b; The complete genome sequence of polygonum ringspot virus. Arch Virol 159:3149–3152 [View Article][PubMed]
    [Google Scholar]
  29. Margaria P., Miozzi L., Ciuffo M., Rosa C., Axtell M. J., Pappu H. R., Turina M. 2016; Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Res 211:38–45 [View Article][PubMed]
    [Google Scholar]
  30. Nagata T., Inoue-Nagata A. K., Prins M., Goldbach R., Peters D. 2000; Impeded thrips transmission of defective tomato spotted wilt virus isolates. Phytopathology 90:454–459 [View Article][PubMed]
    [Google Scholar]
  31. Patel A. H., Elliott R. M. 1992; Characterization of Bunyamwera virus defective interfering particles. J Gen Virol 73:389–396 [View Article][PubMed]
    [Google Scholar]
  32. Plyusnin A., Beaty B. J., Elliott R. M., Goldbach R., Kormelink R., Lundkvist Å., Schmaljohn C. S., Tesh R. B. 2011; Bunyaviridae. In Virus Taxonomy: Classification and Nomenclature Of Viruses - Ninth Report of the International Committee on Taxonomy Of Viruses Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. London: Elsevier;
    [Google Scholar]
  33. Resende R. O., de Haan P., de Avila A. C., Kitajima E. W., Kormelink R., Goldbach R., Peters D. 1991; Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J Gen Virol 72:2375–2383 [View Article][PubMed]
    [Google Scholar]
  34. Resende R. O., de Haan P., van de Vossen E., de Avila A. C., Goldbach R., Peters D. 1992; Defective interfering L RNA segments of tomato spotted wilt virus retain both virus genome termini and have extensive internal deletions. J Gen Virol 73:2509–2516 [View Article][PubMed]
    [Google Scholar]
  35. Ribeiro D., Foresti O., Denecke J., Wellink J., Goldbach R., Kormelink R. J. 2008; Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgi-derived pleomorphic membrane structures in plant cells. J Gen Virol 89:1811–1818 [View Article][PubMed]
    [Google Scholar]
  36. Ribeiro D., Borst J. W., Goldbach R., Kormelink R. 2009; Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta. Virology 383:121–130 [View Article][PubMed]
    [Google Scholar]
  37. Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., Mesirov J. P. 2011; Integrative genomics viewer. Nat Biotechnol 29:24–26 [View Article][PubMed]
    [Google Scholar]
  38. Rossi M., Vallino M., Abbà S., Ciuffo M., Balestrini R., Genre A., Turina M. 2015; The importance of the KR-rich region of the coat protein of ourmia melon virus for host specificity, tissue tropism, and interference with antiviral defense. Mol Plant Microbe Interact 28:30–41 [View Article][PubMed]
    [Google Scholar]
  39. Routh A., Johnson J. E. 2014; Discovery of functional genomic motifs in viruses with ViReMa–a Virus Recombination Mapper–for analysis of next-generation sequencing data. Nucleic Acids Res 42:e11 [View Article][PubMed]
    [Google Scholar]
  40. Routh A., Ordoukhanian P., Johnson J. E. 2012; Nucleotide-resolution profiling of RNA recombination in the encapsidated genome of a eukaryotic RNA virus by next-generation sequencing. J Mol Biol 424:257–269 [View Article][PubMed]
    [Google Scholar]
  41. Sambrook J. 2001 Molecular Cloning: A Laboratory Manual/Joseph Sambrook Edited by Russell D. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Scallan M. F., Elliott R. M. 1992; Defective RNAs in mosquito cells persistently infected with Bunyamwera virus. J Gen Virol 73:53–60 [View Article][PubMed]
    [Google Scholar]
  43. Simon A. E., Engel H., Johnson R. P., Howell S. H. 1988; Identification of regions affecting virulence, RNA processing and infectivity in the virulent satellite of turnip crinkle virus. EMBO J 7:2645–2651[PubMed]
    [Google Scholar]
  44. Steinecke P., Heinze C., Oehmen E., Adam G., Schreier P. H. 1998; Early events of tomato spotted wilt transcription and replication in protoplasts. New Microbiol 21:263–268[PubMed]
    [Google Scholar]
  45. Takeda A., Sugiyama K., Nagano H., Mori M., Kaido M., Mise K., Tsuda S., Okuno T. 2002; Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532:75–79 [View Article][PubMed]
    [Google Scholar]
  46. Thorvaldsdóttir H., Robinson J. T., Mesirov J. P. 2013; Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192 [View Article][PubMed]
    [Google Scholar]
  47. Tomassoli L., Tiberini A., Masenga V., Vicchi V., Turina M. 2009; Characterization of Iris yellow spot virus isolates from onion crops in Northern Italy. J Plant Pathol 91:733–739
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000598
Loading
/content/journal/jgv/10.1099/jgv.0.000598
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error