1887

Abstract

Mulberry badnavirus 1 (MBV1) has been characterized as the aetiological agent of a disease observed on a mulberry tree in Lebanon (accession ). A small RNA next-generation sequencing library was prepared and analysed from extract, and these data together with genome walking experiments have been used to obtain the full-length virus sequence. Uniquely among badnaviruses, the MBV1 sequence encodes a single ORF containing all the conserved pararetrovirus motifs. Two genome sizes (6 kb and 7 kb) were found to be encapsidated in infected plants, the shortest of which shares 98.95 % sequence identity with the full genome. In the less-than-full-length deleted genome, the translational frame for the replication domains was conserved, but the particle morphology, observed under electron microscopy, was somehow altered. Southern blot hybridization confirmed the coexistence of the two genomic forms in the original accession, as well as the absence of cointegration in the plant genome. Both long and deleted genomes were cloned and proved to be infectious in mulberry. Differently from other similar nuclear-replicating viruses or viroids, the characterization of the MBV1-derived small RNAs showed a reduced amount of the 24-mer class size.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000600
2016-11-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/3073.html?itemId=/content/journal/jgv/10.1099/jgv.0.000600&mimeType=html&fmt=ahah

References

  1. Adams I. P., Glover R. H., Monger W. A., Mumford R., Jackeviciene E., Navalinskiene M., Samuitiene M., Boonham N. 2009; Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10:537–545 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Stephen F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  4. Bao Y., Hull R. 1994; Replication intermediates of rice tungro bacilliform virus DNA support a replication mechanism involving reverse transcription. Virology 204:626–633 [View Article][PubMed]
    [Google Scholar]
  5. Barba M., Czosnek H., Hadidi A. 2014; Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6:106–136 [View Article][PubMed]
    [Google Scholar]
  6. Blevins T., Rajeswaran R., Shivaprasad P. V., Beknazariants D., Si-Ammour A., Park H. S., Vazquez F., Robertson D., Meins F. et al. 2006; Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246 [View Article][PubMed]
    [Google Scholar]
  7. Blevins T., Rajeswaran R., Aregger M., Borah B. K., Schepetilnikov M., Baerlocher L., Farinelli L., Meins F., Hohn T. et al. 2011; Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39:5003–5014 [View Article][PubMed]
    [Google Scholar]
  8. Bologna N. G., Voinnet O. 2014; The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503 [View Article][PubMed]
    [Google Scholar]
  9. Bouhida M., Lockhart B. E., Olszewski N. E. 1993; An analysis of the complete sequence of a sugarcane bacilliform virus genome infectious to banana and rice. J Gen Virol 74:15–22 [View Article][PubMed]
    [Google Scholar]
  10. Chen X. 2009; Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44 [View Article][PubMed]
    [Google Scholar]
  11. Chiumenti M., Mohorianu I., Roseti V., Saldarelli P., Dalmay T., Minafra A. 2016a; High-throughput-sequencing-based identification of a grapevine fanleaf virus satellite RNA in vitis vinifera. Arch Virol 161:1401–1403 [View Article]
    [Google Scholar]
  12. Chiumenti M., Uche A., Morelli M., Savino V. N., Martelli G. P., Night P., Palmisano F., Saldarelli P. 2016b; Detection andmolecular characterization of the grapevine leaf discoloration Roditis-associatedvirus (GRLDaV) variant in an autochthonous grape from Apulia(Italy). Virus Genes 52:428–431 [View Article][PubMed]
    [Google Scholar]
  13. Dean F. B., Nelson J. R., Giesler T. L., Lasken R. S. 2001; Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099 [View Article][PubMed]
    [Google Scholar]
  14. Elbeaino T., Chiumenti M., De Stradis A., Digiaro M., Minafra A., Martelli G. P. 2013; Identification of a new Badnavirus infecting mulberry. J Plant Pathol 95:207–210
    [Google Scholar]
  15. Fan Z., Dahal G., Dasgupta I., Hay J., Hull R. 1996; Variation in the genome of rice tungro bacilliform virus: molecular characterization of six isolates. J Gen Virol 77:847–854 [View Article][PubMed]
    [Google Scholar]
  16. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. et al. 2014; Pfam: the protein families database. Nucleic Acids Res 42:D222–D230 [View Article][PubMed]
    [Google Scholar]
  17. Fütterer J., Potrykus I., Brau M. P. V., Dasgupta I., Hull R., Hohn T. 1994; Splicing in a plant pararetrovirus. Virology 198:663–670 [View Article][PubMed]
    [Google Scholar]
  18. Fütterer J., Rothnie H. M., Hohn T., Potrykus I. 1997; Rice tungro bacilliform virus open reading frames II and III are translated from polycistronic pregenomic RNA by leaky scanning. J Virol 71:7984–7989[PubMed]
    [Google Scholar]
  19. Geering A. D., McMichael L. A., Dietzgen R. G., Thomas J. E. 2000; Genetic diversity among banana streak virus isolates from Australia. Phytopathology 90:921–927 [View Article][PubMed]
    [Google Scholar]
  20. Geijskes R. J., Braithwaite K. S., Smith G. R., Dale J. L., Harding R. M. 2004; Sugarcane bacilliform virus encapsidates genome concatamers and does not appear to integrate into the saccharum officinarum genome. Arch Virol 149:791–798 [View Article][PubMed]
    [Google Scholar]
  21. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  22. Hamilton A. J., Baulcombe D. C. 1999; A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286:950–952 [View Article][PubMed]
    [Google Scholar]
  23. Herzog E., Guerra-Peraza O., Hohn T. 2000; The rice tungro bacilliform virus gene II product interacts with the coat protein domain of the viral gene III polyprotein. J Virol 74:2073–2083 [View Article][PubMed]
    [Google Scholar]
  24. Hirochika H., Takatsuji H., Ubasawa A., Ikeda J. E. 1985; Site-specific deletion of cauliflower mosaic virus DNA: possible involvement of RNA splicing and reverse transcription. EMBO J 4:1673–1680[PubMed]
    [Google Scholar]
  25. Hohn T., Rothnie H. 2013; Plant pararetroviruses: replication and expression. Curr Opin Virol 3:621–628 [View Article][PubMed]
    [Google Scholar]
  26. Hohn T., Fütterer J., Hull R. 1997; The proteins and functions of plant pararetroviruses: knowns and unknowns. CRC Crit Rev Plant Sci 16:133–161 [View Article]
    [Google Scholar]
  27. Hohn T., Corsten S., Dominguez D., Fütterer J., Kirk D., Hemmings-Mieszczak M., Pooggin M., Schärer-Hernandez N., Ryabova L. 2001; Shunting is a translation strategy used by plant pararetroviruses (Caulimoviridae). Micron 32:51–57 [View Article][PubMed]
    [Google Scholar]
  28. Howell S. H., Walker L. L., Walden R. M. 1981; Rescue of in vitro generated mutants of cloned cauliflower mosaic virus genome in infected plants. Nature 293:483–486 [View Article]
    [Google Scholar]
  29. Hull R. 2001 Plant Virology Houston, TX: Gulf Professional Publishing;
    [Google Scholar]
  30. Hull R., Shepherd R. J., Harvey J. D. 1976; Cauliflower mosaic virus: an improved purification procedure and some properties of the virus particles. J Gen Virol 31:93–100 [View Article]
    [Google Scholar]
  31. Kazmi S. A., Yang Z., Hong N., Wang G., Wang Y. 2015; Characterization by small RNA sequencing of taro bacilliform CH virus (TaBCHV), a novel badnavirus. PLoS One 10:e0134147 [View Article][PubMed]
    [Google Scholar]
  32. Kim V. N. 2008; Sorting out small RNAs. Cell 133:25–26 [View Article][PubMed]
    [Google Scholar]
  33. King A. M., Adams M. J., Lefkowitz E. J. 2011 Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, vol. 9 Amsterdam, NL: Elsevier;
    [Google Scholar]
  34. Kiss-László, Blanc S., Hohn T. 1995; Splicing of cauliflower mosaic virus 35S RNA is essential for viral infectivity. EMBO J 14:3552–3562[PubMed]
    [Google Scholar]
  35. Laney A. G., Hassan M., Tzanetakis I. E. 2012; An integrated badnavirus is prevalent in fig germplasm. Phytopathology 102:1182–1189 [View Article][PubMed]
    [Google Scholar]
  36. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  37. Li R., Li Y., Kristiansen K., Wang J. 2008; SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714 [View Article][PubMed]
    [Google Scholar]
  38. Lu C., Meyers B. C., Green P. J. 2007; Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117 [View Article][PubMed]
    [Google Scholar]
  39. Lupas A. 1996; Prediction and analysis of coiled-coil structures. Methods Enzymol 266:513–525[PubMed] [CrossRef]
    [Google Scholar]
  40. Lupas A., Van Dyke M., Stock J. 1991; Predicting coiled coils from protein sequences. Science 252:1162–1164 [View Article][PubMed]
    [Google Scholar]
  41. Maliogka V. I., Olmos A., Pappi P. G., Lotos L., Efthimiou K., Grammatikaki G., Candresse T., Katis N. I., Avgelis A. D. 2015; A novel grapevine badnavirus is associated with the roditis leaf discoloration disease. Virus Res 203:47–55 [View Article][PubMed]
    [Google Scholar]
  42. Mallory A., Vaucheret H. 2010; Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889 [View Article][PubMed]
    [Google Scholar]
  43. Marchler-Bauer A., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R. et al. 2008; CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 37:D205–D210 [View Article][PubMed]
    [Google Scholar]
  44. Massart S., Olmos A., Jijakli H., Candresse T. 2014; Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res 188:90–96 [View Article][PubMed]
    [Google Scholar]
  45. Medberry S. L., Lockhart B. E., Olszewski N. E. 1990; Properties of commelina yellow mottle virus's complete DNA sequence, genomic discontinuities and transcript suggest that it is a pararetrovirus. Nucleic Acids Res 18:5505–5513 [View Article][PubMed]
    [Google Scholar]
  46. Medberry S. L., Lockhart B. E., Olszewski N. E. 1992; The commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell 4:185–192 [View Article][PubMed]
    [Google Scholar]
  47. Mi S., Cai T., Hu Y., Chen Y., Hodges E., Ni F., Wu L., Li S., Zhou H. et al. 2008; Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 133:116–127 [View Article][PubMed]
    [Google Scholar]
  48. Milne R. G. 1993; Electron microscopy of in vitro preparations. In Diagnosis of Plant Virus Diseases , pp. 215–249 Edited by Matthews R. E. F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  49. Murray M. G., Thompson W. F. 1980; Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326 [View Article][PubMed]
    [Google Scholar]
  50. Nagy P. D., Simon A. E. 1997; New insights into the mechanisms of RNA recombination. Virology 235:1–9 [View Article][PubMed]
    [Google Scholar]
  51. Ng T. F. F., Duffy S., Polston J. E., Bixby E., Vallad G. E., Breitbart M. 2011; Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS One 6:e19050 [View Article][PubMed]
    [Google Scholar]
  52. Odell J. T., Nagy F., Chua N. H. 1985; Identification of DNA sequences required for activity of the cauliflower mosaic virus 35s promoter. Nature 313:810–812 [View Article][PubMed]
    [Google Scholar]
  53. Parent J. S., Martínez de Alba A. E., Vaucheret H. 2012; The origin and effect of small RNA signaling in plants. Front Plant Sci 3:179 [View Article][PubMed]
    [Google Scholar]
  54. Pathak V. K., Hu W. S. 1997; ‘Might as well jump!’ template switching by retroviral reverse transcriptase, defective genome formation, and recombination. In Seminars in Virology vol. 8 , pp. 141–150 Cambridge, MA: Academic Press;
    [Google Scholar]
  55. Pathak K. B., Nagy P. D. 2009; Defective interfering RNAs: foes of viruses and friends of virologists. Viruses 1:895–919 [View Article][PubMed]
    [Google Scholar]
  56. Plisson C., Uzest M., Drucker M., Froissart R., Dumas C., Conway J., Thomas D., Blanc S., Bron P. 2005; Structure of the mature P3-virus particle complex of cauliflower mosaic virus revealed by cryo-electron microscopy. J Mol Biol 346:267–277 [View Article][PubMed]
    [Google Scholar]
  57. Pooggin M. M. 2013; How can plant DNA viruses evade siRNA-directed DNA methylation and silencing?. Int J Mol Sci 14:15233–15259 [View Article][PubMed]
    [Google Scholar]
  58. Pooggin M. M., Fütterer J., Skryabin K. G., Hohn T. 1999; A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol 80:2217–2228 [View Article][PubMed]
    [Google Scholar]
  59. Pumplin N., Voinnet O. 2013; RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760 [View Article][PubMed]
    [Google Scholar]
  60. Raja P., Wolf J. N., Bisaro D. M. 2010; RNA silencing directed against geminiviruses: post-transcriptional and epigenetic components. Biochim Biophys Acta 1799:337–351 [View Article][PubMed]
    [Google Scholar]
  61. Richert-Pöggeler K. R., Shepherd R. J. 1997; Petunia vein-clearing virus: a plant pararetrovirus with the core sequences for an integrase function. Virology 236:137–146 [View Article][PubMed]
    [Google Scholar]
  62. Rojas M. R., Hagen C., Lucas W. J., Gilbertson R. L. 2005; Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394 [View Article][PubMed]
    [Google Scholar]
  63. Ryabova L. A., Pooggin M. M., Hohn T. 2002; Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Re 72:1–39 [CrossRef]
    [Google Scholar]
  64. Ryabova L. A., Pooggin M. M., Hohn T. 2006; Translation reinitiation and leaky scanning in plant viruses. Virus Res 119:52–62 [View Article][PubMed]
    [Google Scholar]
  65. Scholthof H. B., Wu F. C., Richins R. D., Shepherd R. J. 1991; A naturally occurring deletion mutant of figwort mosaic virus (caulimovirus) is generated by RNA splicing. Virology 184:290–298 [View Article][PubMed]
    [Google Scholar]
  66. Sether D. M., Melzer M. J., Borth W. B., Hu J. S. 2012; Pineapple bacilliform CO virus: diversity, detection, distribution, and transmission. Plant Dis 96:1798–1804 [View Article]
    [Google Scholar]
  67. Sharma S., Rabindran R., Robin S., Dasgupta I. 2011; Analysis of the complete DNA sequence of rice tungro bacilliform virus from southern India indicates it to be a product of recombination. Arch Virol 156:2257–2262 [View Article][PubMed]
    [Google Scholar]
  68. Simon A. E., Roossinck M. J., Havelda Z. 2004; Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu Rev Phytopathol 42:415–437 [View Article][PubMed]
    [Google Scholar]
  69. Staginnus C., Richert-Pöggeler K. R. 2006; Endogenous pararetroviruses: two-faced travelers in the plant genome. Trends Plant Sci 11:485–491 [View Article][PubMed]
    [Google Scholar]
  70. Stavolone L., Herzog E., Leclerc D., Hohn T. 2001; Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J Virol 75:7739–7743 [View Article][PubMed]
    [Google Scholar]
  71. Stavolone L., Villani M. E., Leclerc D., Hohn T. 2005; A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci USA 102:6219–6224 [View Article][PubMed]
    [Google Scholar]
  72. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  73. Temin H. M. 1993; Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci USA 90:6900–6903 [View Article]
    [Google Scholar]
  74. Thomas C. M., Hull R., Bryant J. A., Maule A. J. 1985; Isolation of a fraction from cauliflower mosaic virus-infected protoplasts which is active in the synthesis of (+) and (−) strand viral DNA and reverse transcription of primed RNA templates. Nucleic Acids Res 13:4557–4576 [View Article][PubMed]
    [Google Scholar]
  75. Turner D. S., Covey S. N. 1988; Discontinuous hairpin DNAs synthesised in vivo following specific and non-specific priming of cauliflower mosaic virus DNA (+) strands. Virus Res 9:49–62 [View Article]
    [Google Scholar]
  76. Vaden V. R., Melcher U. 1990; Recombination sites in cauliflower mosaic virus DNA: implications for mechanisms of recombination. Virology 177:717–726 [View Article][PubMed]
    [Google Scholar]
  77. Voinnet O. 2008; Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328 [View Article][PubMed]
    [Google Scholar]
  78. Zerbino D. R., Birney E. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829 [View Article][PubMed]
    [Google Scholar]
  79. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000600
Loading
/content/journal/jgv/10.1099/jgv.0.000600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error