-
Volume 163,
Issue 11,
2017
Volume 163, Issue 11, 2017

- Biotechnology
-
-
-
Purified citritin in combination with vancomycin inhibits VRE in vitro and in vivo
Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) have been frequently associated with bacterial resistance mechanisms. These mechanisms, in turn, restrict a range of therapeutic opportunities for the treatment of infections caused by these micro-organisms. Faced with this problem, the present study aims to isolate and characterize molecules with antimicrobial activity derived from the fungus Penicillium citrinum isolated from Cerrado soil. Furthermore, we also tested possible antibacterial potential alone and in combination with commercial antimicrobial agents. In this context, citrinin was isolated and characterized by nuclear magnetic resonance and electrospray ionization. Functional analyses showed MIC of 128 µg ml−1 against S. aureus ATCC 25923, E. faecalis ATCC 29212 and a clinical isolate of vancomycin-resistant E. faecium (VRE01). However, for a clinical strain of methicillin-resistant S. aureus (MRSA01), the MIC was 256 µg ml−1. In order to avoid such high concentrations and reduce the collateral effects, additive effects were evidenced by combining citrinin with cefoxitin against MRSA01 (FIC index=0.5) and also citrinin with vancomycin toward VRE01 (FIC index=0.5). In vivo studies with BALB/c-tipe mice (MRSA assay) demonstrated a clinical ineffectiveness of cefoxitin associated with citrinin (9.8 mg kg−1 of cefoxitin +0.2 mg kg−1 of citrinin), with this combination being inefficient to increase animal survival. However, the combination used in the treatment of VRE (23.5 mg kg−1 of citrinin +1.5 mg kg−1 of vancomycin) sepsis model was extremely promising, leading to an animal survival rate of 80 percent. In summary, our data show, for the first time, the possible successful use of citrinin associated with vancomycin for pathogenic bacteria control.
-
-
-
-
Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique
More LessBacillus licheniformis strains are used for the large-scale production of industrial exoenzymes from proteinaceous substrates, but details of the amino acid metabolism involved are largely unknown. In this study, two chromosomal genes putatively involved in amino acid metabolism of B. licheniformis were deleted to clarify their role. For this, a convenient counterselection system for markerless in-frame deletions was developed for B. licheniformis. A deletion plasmid containing up- and downstream DNA segments of the chromosomal deletion target was conjugated to B. licheniformis and integrated into the genome by homologous recombination. Thereafter, the counterselection was done by using a codBA cassette. The presence of cytosine deaminase and cytosine permease exerted a conditionally lethal phenotype on B. licheniformis cells in the presence of the cytosine analogue 5-fluorocytosine. Thereby clones were selected that lost the integrated vector sequence and the anticipated deletion target after a second recombination step. This method allows the construction of markerless mutants in Bacillus strains in iterative cycles. B. licheniformis MW3 derivatives lacking either one of the ORFs BL03009 or BL00190, encoding a putative alanine dehydrogenase and a similar putative enzyme, respectively, retained the ability to grow in minimal medium supplemented with alanine as the carbon source. In the double deletion mutant MW3 ΔBL03009 ΔBL00190, however, growth on alanine was completely abolished. These data indicate that the two encoded enzymes are paralogues fulfilling mutually replaceable functions in alanine utilization, and suggest that in B. licheniformis MW3 alanine utilization is initiated by direct oxidative transamination to pyruvate and ammonium.
-
- Cell Biology
-
-
-
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother–daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.
-
-
-
-
Response to photo-oxidative stress of Pseudomonas aeruginosa PAO1 mutants impaired in different functions
Clinicians often have to deal with infections that are difficult to control because they are caused by superbugs resistant to many antibiotics. Alternatives to antibiotic treatment include antimicrobial photodynamic therapy (aPDT). The photodynamic process causes bacterial death, inducing oxidative stress through the photoactivation of photosensitizer molecules in the presence of oxygen. No PDT-resistant bacteria have been selected to date, thus the response to photo-oxidative stress in non-phototrophic bacteria needs further investigation. The opportunistic pathogen Pseudomonas aeruginosa, in particular, has been shown to be more tolerant to PDT than other micro-organisms. In order to find any genetic determinants involved in PDT-tolerance, a panel of transposon mutants of P. aeruginosa PAO1 involved in the quorum sensing signalling system and membrane cytoplasmic transport were photoinactivated as part of this study. Two pseudomonas quinolone signalling (PQS) knock-out mutants, pqsH - and pqsC -, were as PDT-sensitive as the PAO1 wild-type strains. Two PQS hyperproducer variants, pqsA - and rsaL -, were shown to be more tolerant to photo-oxidative stress than the wild-type strain. In the pqsA - mutant, the hyperpigmentation due to the presence of phenazines could protect cells against PDT stress, while in rsaL - no pigmentation was detectable. Furthermore, a mutant impaired in an ATP-binding cassette transport involved in maintaining the asymmetry of the outer membrane was significantly more tolerant to photo-oxidative stress than the wild-type strain. These observations support the involvement of quorum sensing and the importance of the bacterial cell envelope when dealing with photo-oxidative stress induced by photodynamic treatment.
-
- Environmental Biology
-
-
-
Pseudomonas phage inhibition of Candida albicans
Pseudomonas aeruginosa (Pa) and Candida albicans (Ca) are major bacterial and fungal pathogens in immunocompromised hosts, and notably in the airways of cystic fibrosis patients. The bacteriophages of Pa physically alter biofilms, and were recently shown to inhibit the biofilms of Aspergillus fumigatus. To understand the range of this viral–fungal interaction, we studied Pa phages Pf4 and Pf1, and their interactions with Ca biofilm formation and preformed Ca biofilm. Both forms of Ca biofilm development, as well as planktonic Ca growth, were inhibited by either phage. The inhibition of biofilm was reversed by the addition of iron, suggesting that the mechanism of phage action on Ca involves denial of iron. Birefringence studies on added phage showed an ordered structure of binding to Ca. Electron microscopic observations indicated phage aggregation in the biofilm extracellular matrix. Bacteriophage–fungal interactions may be a general feature with several pathogens in the fungal kingdom.
-
-
- Host-Microbe Interaction
-
-
-
Ultrastructural and microbial analyses of cellulose degradation in leaf-cutter ant colonies
More LessLeaf-cutter ants (Atta and Acromyrmex) use fresh leaves to cultivate a mutualistic fungus (Leucoagaricus gongylophorus) for food in underground gardens. A new ant queen propagates the cultivar by taking a small fragment of fungus from her parent colony on her nuptial flight and uses it to begin her own colony. Recent research has shown that the ants’ fungus gardens are colonized by symbiotic bacteria that perform important functions related to nitrogen fixation and have been implicated in contributing to plant biomass degradation. Here, we combine bacterial culturing in several media for counts and identification using the 16S rRNA gene with electron microscopy to investigate the process of cellulose degradation in the fungus garden and refuse dumps, and to assess the potential role of symbiotic bacteria. We show through electron microscopy that plant cell walls are visibly degraded in the bottom section of fungus gardens and refuse dumps, and that bacteria are more abundant in these sections. We also consistently isolated cellulolytic bacteria from all sections of fungus gardens. Finally, we show by culture-dependent and electron microscopy analysis that the fungus garden pellets carried by recently mated queens are colonized by fungus garden-associated bacteria. Taken together, our results indicate that cellulose is degraded in fungus gardens, and that fungus garden bacteria that may contribute to this deconstruction are vertically transmitted by new queens.
-
-
-
-
Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin
More LessStenotrophomonas maltophilia, a Gram-negative, multi-drug-resistant bacterium, is increasingly recognized as a key opportunistic pathogen. Thus, we embarked upon an investigation of S. maltophilia iron acquisition. To begin, we determined that the genome of strain K279a is predicted to encode a complete siderophore system, including a biosynthesis pathway, an outer-membrane receptor for ferrisiderophore, and other import and export machinery. Compatible with these data, K279a and other clinical isolates of S. maltophilia secreted a siderophore-like activity when grown at 25–37 °C in low-iron media, as demonstrated by a chrome azurol S assay, which detects iron chelation, and Arnow and Rioux assays, which detect catecholate structures. Importantly, these supernatants rescued the growth of iron-starved S. maltophilia, documenting the presence of a biologically active siderophore. A mutation in one of the predicted biosynthesis genes (entC) abolished production of the siderophore and impaired bacterial growth in low-iron conditions. Inactivation of the putative receptor gene (fepA) prevented the utilization of siderophore-containing supernatants for growth in low-iron conditions. Although the biosynthesis and import loci showed some similarity to those of enterobactin, a well-known catecholate made by enteric bacteria, the siderophore of K279a was unable to rescue the growth of an enterobactin-utilizing indicator strain, and conversely iron-starved S. maltophilia could not use purified enterobactin. Furthermore, the S. maltophilia siderophore displayed patterns of solubility in organic compounds and mobility upon thin-layer chromatography that were distinct from those of enterobactin and its derivative, salmochelin. Together, these data demonstrate that S. maltophilia secretes a novel catecholate siderophore.
-
- Physiology and Metabolism
-
-
-
Phosphoglycerate kinase acts as a futile cycle at high temperature
More LessIn (hyper)thermophilic organisms metabolic processes have to be adapted to function optimally at high temperature. We compared the gluconeogenic conversion of 3-phosphoglycerate via 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate at 30 °C and at 70 °C. At 30 °C it was possible to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate with phosphoglycerate kinase, but at 70 °C, 1,3-bisphosphoglycerate was dephosphorylated rapidly to 3-phosphoglycerate, effectively turning the phosphoglycerate kinase into a futile cycle. When phosphoglycerate kinase was incubated together with glyceraldehyde 3-phosphate dehydrogenase it was possible to convert 3-phosphoglycerate to glyceraldehyde 3-phosphate, both at 30 °C and at 70 °C, however, at 70 °C only low concentrations of product were observed due to thermal instability of glyceraldehyde 3-phosphate. Thus, thermolabile intermediates challenge central metabolic reactions and require special adaptation strategies for life at high temperature.
-
-
-
-
Pseudomonas aeruginosa variants obtained from veterinary clinical samples reveal a role for cyclic di-GMP in biofilm formation and colony morphology
Overuse of antibiotics is contributing to an emerging antimicrobial resistance crisis. To better understand how bacteria adapt tolerance and resist antibiotic treatment, Pseudomonas aeruginosa isolates obtained from infection sites sampled from companion animals were collected and evaluated for phenotypic differences. Selected pairs of clonal isolates were obtained from individual infection samples and were assessed for antibiotic susceptibility, cyclic di-GMP levels, biofilm production, motility and genetic-relatedness. A total of 18 samples from equine, feline and canine origin were characterized. A sample from canine otitis media produced a phenotypically heterogeneous pair of P. aeruginosa isolates, 42121A and 42121B, which during growth on culture medium respectively exhibited hyper dye-binding small colony morphology and wild-type phenotypes. Antibiotic susceptibility to gentamicin and ciprofloxacin also differed between this pair of clonal isolates. Sequence analysis of gyrA, a gene known to be involved in ciprofloxacin resistance, indicated that 42121A and 42121B both contained mutations that confer ciprofloxacin resistance, but this did not explain the differences in ciprofloxacin resistance that were observed. Cyclic di-GMP levels also varied between this pair of isolates and were shown to contribute to the observed colony morphology variation and ability to form a biofilm. Our results demonstrate the role of cyclic di-GMP in generating the observed morphological phenotypes that are known to contribute to biofilm-mediated antibiotic tolerance. The generation of phenotypic diversity may go unnoticed during standard diagnostic evaluation, which potentially impacts the therapeutic strategy chosen to treat the corresponding infection and may contribute to the spread of antibiotic resistance.
-
-
-
Exogenous polyunsaturated fatty acids (PUFAs) alter phospholipid composition, membrane permeability, biofilm formation and motility in Acinetobacter baumannii
Acinetobacter baumannii is a ubiquitous multidrug-resistant bacteria that is found on a variety of surfaces, including skin, hair and soil. During the past decade, A. baumannii has emerged as a significant cause of nosocomial infections in the United States. Recent studies have highlighted the ability of some bacteria to utilize a wide variety of fatty acids as a membrane remodelling strategy. Considering this, we hypothesized that fatty acids may have an effect on the emerging pathogen A. baumannii. Thin-layer chromatography indicated structural alterations to major phospholipids. Liquid chromatography/mass spectrometry confirmed the assimilation of numerous exogenous polyunsaturated fatty acids (PUFAs) into the phospholipid species of A. baumannii. The incorporation of fatty acids affected several bacterial phenotypes, including membrane permeability, biofilm formation, surface motility and antimicrobial peptide resistance.
-
-
-
The O-antigen structure of bacterium Comamonas aquatica CJG
More LessGenus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1H and 13C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.
-
- Regulation
-
-
-
The amino-terminal domain of ELL transcription elongation factor is essential for ELL function in Schizosaccharomyces pombe
More LessTranscriptional elongation is a critical step for regulating expression of protein-coding genes. Multiple transcription elongation factors have been identified in vitro, but the physiological roles of many of them are still not clearly understood. The ELL (Eleven nineteen Lysine rich Leukemia) family of transcription elongation factors are conserved from fission yeast to humans. Schizosaccharomyces pombe contains a single ELL homolog (SpELL) that is not essential for its survival. Therefore to gain insights into the in vivo cellular functions of SpELL, we identified phenotypes associated with deletion of ell1 in S. pombe. Our results demonstrate that SpELL is required for normal growth of S. pombe cells. Furthermore, cells lacking ell1 + exhibit a decrease in survival when exposed to DNA-damaging conditions, but their growth is not affected under environmental stress conditions. ELL orthologs in different organisms contain three conserved domains, an amino-terminal domain, a middle domain and a carboxyl-terminal domain. We also carried out an in vivo functional mapping of these conserved domains within S. pombe ELL and uncovered a critical role for its amino-terminus in regulating all its cellular functions, including growth under different conditions, transcriptional elongation potential and interaction with S. pombe EAF. Taken together our results suggest that the domain organization of ELL proteins is conserved across species, but the in vivo functions as well as the relationship between the various domains and roles of ELL show species-specific differences.
-
-
-
-
VerZ, a Zn(II)2Cys6 DNA-binding protein, regulates the biosynthesis of verticillin in Clonostachys rogersoniana
Verticillins are the dimeric epipolythiodioxopiperazines (ETPs) produced by the fungus Clonostachys rogersoniana. Despite their profound biological effects, they are commonly produced in rice medium as complex mixtures that are difficult to separate, limiting further study and evaluation for this class of metabolites. Therefore, there is an urgent need to understand the regulation of verticillin biosynthesis. Recently, we cloned the biosynthetic gene cluster of verticillin (ver), and identified the only regulatory gene verZ in this cluster. The deduced product of verZ contains a basic Zn(II)2Cys6 DNA-binding domain. Disruption of verZ significantly reduced the production of 11′-deoxyverticillin A (C42) and decreased the transcriptional level of the verticillin biosynthetic genes. To further reveal its function, a recombinant gene encoding the DNA-binding domain of VerZ was expressed in E. coli and the His6-tagged VerZbd was purified to homogeneity by Ni-NTA chromatography. Electrophoretic mobility shift assays (EMSAs) showed that VerZbd bound specifically to the promoter regions of the verticillin biosynthetic genes. Bioinformatic analysis of the VerZbd-binding regions revealed a conserved palindromic sequence of (T/C)(C/A)(G/T)GN3CC(G/T)(A/G)(G/C). Base substitution of the conserved sequence completely abolished the binding activity of VerZbd to its targets. These results suggested that VerZ controls verticillin production through directly activating transcription of the biosynthetic genes in C. rogersoniana.
-
-
-
Whole genome transcriptomics reveals global effects including up-regulation of Francisella pathogenicity island gene expression during active stringent response in the highly virulent Francisella tularensis subsp. tularensis SCHU S4
More LessDuring conditions of nutrient limitation bacteria undergo a series of global gene expression changes to survive conditions of amino acid and fatty acid starvation. Rapid reallocation of cellular resources is brought about by gene expression changes coordinated by the signalling nucleotides' guanosine tetraphosphate or pentaphosphate, collectively termed (p)ppGpp and is known as the stringent response. The stringent response has been implicated in bacterial virulence, with elevated (p)ppGpp levels being associated with increased virulence gene expression. This has been observed in the highly pathogenic Francisella tularensis sub spp. tularensis SCHU S4, the causative agent of tularaemia. Here, we aimed to artificially induce the stringent response by culturing F. tularensis in the presence of the amino acid analogue l-serine hydroxamate. Serine hydroxamate competitively inhibits tRNAser aminoacylation, causing an accumulation of uncharged tRNA. The uncharged tRNA enters the A site on the translating bacterial ribosome and causes ribosome stalling, in turn stimulating the production of (p)ppGpp and activation of the stringent response. Using the essential virulence gene iglC, which is encoded on the Francisella pathogenicity island (FPI) as a marker of active stringent response, we optimized the culture conditions required for the investigation of virulence gene expression under conditions of nutrient limitation. We subsequently used whole genome RNA-seq to show how F. tularensis alters gene expression on a global scale during active stringent response. Key findings included up-regulation of genes involved in virulence, stress responses and metabolism, and down-regulation of genes involved in metabolite transport and cell division. F. tularensis is a highly virulent intracellular pathogen capable of causing debilitating or fatal disease at extremely low infectious doses. However, virulence mechanisms are still poorly understood. The stringent response is widely recognized as a diverse and complex bacterial stress response implicated in virulence. This work describes the global gene expression profile of F. tularensis SCHU S4 under active stringent response for the first time. Herein we provide evidence for an association of active stringent response with FPI virulence gene expression. Our results further the understanding of the molecular basis of virulence and regulation thereof in F. tularensis. These results also support research into genes involved in (p)ppGpp production and polyphosphate biosynthesis and their applicability as targets for novel antimicrobials.
-
-
-
The Agrobacterium tumefaciens CheY-like protein ClaR regulates biofilm formation
More LessThe switch from a motile, planktonic existence to an attached biofilm is a major bacterial lifestyle transition that is often mediated by complex regulatory pathways. In this report, we describe a CheY-like protein required for control of the motile-to-sessile switch in the plant pathogen Agrobacterium tumefaciens. This regulator, which we have designated ClaR, possesses two distinct CheY-like receiver (REC) domains and is involved in the negative regulation of biofilm formation, through production of the unipolar polysaccharide (UPP) adhesin and cellulose. The ClaR REC domains share predicted structural homology with characterized REC domains and contain the majority of active site residues known to be essential for protein phosphorylation. REC1 is missing the conserved aspartate (N72) residue and although present in REC 2 (D193), it is not required for ClaR-dependent regulation suggesting that phosphorylation, which modulates the activity of many CheY-like proteins, appears not to be essential for ClaR activity. We also show that ClaR-dependent negative regulation of attachment is diminished significantly in mutants for PruA and PruR, proteins known to be involved in a pterin-mediated attachment regulation pathway. In A. tumefaciens, pterins are required for control of the intracellular signal cyclic diguanylate monophosphate through the DcpA regulator, but our findings suggest that pterin-dependent ClaR control of attachment can function independently from DcpA, including dampening of c-di-GMP levels. This report of a novel CheY-type biofilm regulator in A. tumefaciens thus also adds significant details to the role of pterin-mediated signalling.
-
-
-
Unravelling the transcriptional regulation of Saccharomyces cerevisiae UGA genes: the dual role of transcription factor Leu3
More LessYeast cells can use γ-aminobutyric acid (GABA), a non-protein amino acid, as a nitrogen source that is mainly imported by the permease Uga4 and catabolized by the enzymes GABA transaminase and succinate-semialdehyde dehydrogenase, encoded by the UGA1 and UGA2 genes, respectively. The three UGA genes are inducible by GABA and subject to nitrogen catabolite repression. Hence, their regulation occurs through two mechanisms, one dependent on the inducer and the other on nitrogen source quality. The aim of this work was to better understand the molecular mechanisms of transcription factors acting on different regulatory elements present in UGA promoters, such as Uga3, Dal81, Leu3 and the GATA factors, and to establish the mechanism of the concerted action between them. We found that Gat1 plays an important role in the induction of UGA4 transcription by GABA and that Gzf3 has an effect in cells grown in a poor nitrogen source such as proline and that this effect is positive on UGA4 expression. We also found that Gln3 and Dal80 affect the interaction of Uga3 and Dal81 on UGA promoters. Moreover, our results indicated that the repressing activity of Leu3 on UGA4 and UGA1 occurs through Dal80 since we demonstrated that Leu3 facilitates Dal80 interaction with DNA. However, when the expression of GATA factors is null or negligible, Leu3 functions as an activator.
-
-
-
Nitrogen regulator GlnR directly controls transcription of genes encoding lysine deacetylases in Actinobacteria
Ying Xu, Di You and Bang-Ce YeN-Lysine acetylation is a dynamic, reversible and regulatory post-translational modification (PTM) in prokaryotes, which integrates and coordinates metabolisms responding to environmental clues. However, the molecular mechanism underlying the signalling pathway from nutrient sensing to protein acetylation remains incompletely understood in micro-organisms. Here we found that global nitrogen regulator GlnR directly controls transcription of genes encoding lysine deacetylases in Actinobacteria. Electrophoretic mobility shift assays and real-time PCR (RT-PCR) in three Actinobacteria species (Saccharopolyspora erythraea, Streptomyces coelicolor and Mycobacterium smegmatis) revealed that GlnR regulator protein is able to interact with the promoter regions of these genes and activate their transcription. Furthermore, it was demonstrated that cellular acetylation status (acetylome) is modulated by extracellular nitrogen availability. Our results present an example of the novel complete signal transduction mechanism of regulating protein deacetylation through a nutrient-sensing pleiotropic regulator in response to nutrient availability.
-
-
-
The nitrogen-regulated response regulator NrrA is a conserved regulator of glycogen catabolism in β-cyanobacteria
More LessCyanobacteria acclimatize to nitrogen deprivation by changing cellular metabolism. The nitrogen-regulated response regulator A (NrrA) is involved in regulation of carbon metabolism in response to nitrogen deprivation. However, it has not been elucidated whether these regulatory functions of NrrA are particular to a few model strains or are general among diverse cyanobacteria. In this study, we showed that regulation and functions of NrrA were highly conserved among β-cyanobacteria, which included physiologically and ecologically diverse strains. All β-cyanobacteria had the nrrA gene, while it was absent in α-cyanobacteria. The canonical NtcA-dependent promoter sequence was found upstream of the nrrA genes in most β-cyanobacteria, and its expression was indeed induced by nitrogen deprivation. Biochemical and physiological analyses of NrrA from phylogenetically distinct cyanobacteria indicated that regulation of NrrA activity and NrrA functions, namely activation of glycogen catabolism, were also common to β-cyanobacteria. These results support the conclusion that NrrA plays an important role in acclimatization to nitrogen deprivation, and that activation of glycogen catabolism is a primitive response to nitrogen deprivation in β-cyanobacteria.
-
-
-
The sibling sRNAs NgncR_162 and NgncR_163 of Neisseria gonorrhoeae participate in the expression control of metabolic, transport and regulatory proteins
Neisseria gonorrhoeae is the causative agent of gonorrhoea, the second most common bacterial sexually transmitted disease. Riboregulation mediated by small regulatory RNAs (sRNAs) is increasingly recognized as an important means of gene expression control in this human-restricted pathogen. sRNAs act at the post-transcriptional level by base-pairing with their target mRNAs which affects translation initiation and/or mRNA stability. In this study we initiated the characterization of a pair of highly conserved sRNAs of N. gonorrhoeae which exhibit redundant functions in the control of a common set of target genes. The identified targets of the sibling sRNAs NgncR_162 and NgncR_163 participate in basic metabolic processes including the methylcitrate and citrate cycle, aa uptake and degradation, and also in transcription regulation. Our data indicate that the sibling sRNAs control their targets via direct base-pairing between the same single-stranded domain(s) of the sRNA and the ribosome binding site in the 5′-untranslated region of the mRNA.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
