1887

Abstract

Verticillins are the dimeric epipolythiodioxopiperazines (ETPs) produced by the fungus . Despite their profound biological effects, they are commonly produced in rice medium as complex mixtures that are difficult to separate, limiting further study and evaluation for this class of metabolites. Therefore, there is an urgent need to understand the regulation of verticillin biosynthesis. Recently, we cloned the biosynthetic gene cluster of verticillin (), and identified the only regulatory gene in this cluster. The deduced product of contains a basic Zn(II)Cys DNA-binding domain. Disruption of significantly reduced the production of 11′-deoxyverticillin A (C42) and decreased the transcriptional level of the verticillin biosynthetic genes. To further reveal its function, a recombinant gene encoding the DNA-binding domain of VerZ was expressed in and the His-tagged VerZbd was purified to homogeneity by Ni-NTA chromatography. Electrophoretic mobility shift assays (EMSAs) showed that VerZbd bound specifically to the promoter regions of the verticillin biosynthetic genes. Bioinformatic analysis of the VerZbd-binding regions revealed a conserved palindromic sequence of (T/C)(C/A)(G/T)GNCC(G/T)(A/G)(G/C). Base substitution of the conserved sequence completely abolished the binding activity of VerZbd to its targets. These results suggested that VerZ controls verticillin production through directly activating transcription of the biosynthetic genes in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000557
2017-11-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/11/1654.html?itemId=/content/journal/micro/10.1099/mic.0.000557&mimeType=html&fmt=ahah

References

  1. Gardiner DM, Howlett BJ. Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 2005;248:241–248 [CrossRef][PubMed]
    [Google Scholar]
  2. Sutton P, Newcombe NR, Waring P, Müllbacher A. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 1994;62:1192–1198[PubMed]
    [Google Scholar]
  3. Sutton P, Waring P, Müllbacher A. Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunol Cell Biol 1996;74:318–322 [CrossRef][PubMed]
    [Google Scholar]
  4. Wilhite SE, Lumsden RD, Straney DC. Peptide synthetase gene in Trichoderma virens. Appl Environ Microbiol 2001;67:5055–5062 [CrossRef][PubMed]
    [Google Scholar]
  5. Macdonald JC, Slater GP. Biosynthesis of gliotoxin and mycelianamide. Can J Biochem 1975;53:475–478 [CrossRef][PubMed]
    [Google Scholar]
  6. Reece KM, Richardson ED, Cook KM, Campbell TJ, Pisle ST et al. Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor activity by disrupting the HIF-1α/p300 complex in a preclinical model of prostate cancer. Mol Cancer 2014;13:91 [CrossRef][PubMed]
    [Google Scholar]
  7. Dong JY, He HP, Shen YM, Zhang KQ. Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J Nat Prod 2005;68:1510–1513 [CrossRef][PubMed]
    [Google Scholar]
  8. Zheng CJ, Park SH, Koshino H, Kim YH, Kim WG et al. a new antibacterial compound from Bionectra byssicola. J Antibiot 2007;38:61–64[Crossref]
    [Google Scholar]
  9. Katagiri K, Sato K, Hayakawa S, Matsushima T, Minato H. Verticillin A, a new antibiotic from Verticillium sp. J Antibiot 1970;23:420–422 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen Y, Guo H, Du Z, Liu XZ, Che Y et al. Ecology-based screen identifies new metabolites from a Cordyceps-colonizing fungus as cancer cell proliferation inhibitors and apoptosis inducers. Cell Prolif 2009;42:838–847 [CrossRef][PubMed]
    [Google Scholar]
  11. Guo H, Hu H, Liu S, Liu X, Zhou Y et al. Bioactive p-terphenyl derivatives from a Cordyceps-colonizing isolate of Gliocladium sp. J Nat Prod 2007;70:1519–1521 [CrossRef][PubMed]
    [Google Scholar]
  12. Wang Y, Hu P, Pan Y, Zhu Y, Liu X et al. Identification and characterization of the verticillin biosynthetic gene cluster in Clonostachys rogersoniana. Fungal Genet Biol 2017;103:25–33 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang N, Chen Y, Jiang R, Li E, Chen X et al. PARP and RIP 1 are required for autophagy induced by 11'-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 2011;7:598–612 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim J, Ashenhurst JA, Movassaghi M. Total synthesis of (+)-11,11'-dideoxyverticillin A. Science 2009;324:238–241 [CrossRef][PubMed]
    [Google Scholar]
  15. Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol 2013;11:21–32 [CrossRef][PubMed]
    [Google Scholar]
  16. Gil-Durán C, Rojas-Aedo JF, Medina E, Vaca I, García-Rico RO et al. The pcz1 gene, which encodes a Zn(II)2Cys6 protein, is involved in the control of growth, conidiation, and conidial germination in the filamentous fungus Penicillium roqueforti. PLoS One 2015;10:e0120740 [CrossRef][PubMed]
    [Google Scholar]
  17. Macpherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006;70:583–604 [CrossRef][PubMed]
    [Google Scholar]
  18. Chang PK, Ehrlich KC. Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus. Appl Microbiol Biotechnol 2013;97:4289–4300 [CrossRef][PubMed]
    [Google Scholar]
  19. Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001;11:39–46 [CrossRef][PubMed]
    [Google Scholar]
  20. Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 1987;51:458–476[PubMed]
    [Google Scholar]
  21. Todd RB, Andrianopoulos A. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 1997;21:388–405 [CrossRef][PubMed]
    [Google Scholar]
  22. Li J, Pan Y, Liu G. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol 2013;61:69–79 [CrossRef][PubMed]
    [Google Scholar]
  23. Guan F, Pan Y, Li J, Liu G. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci 2017;60:958–967 [CrossRef][PubMed]
    [Google Scholar]
  24. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 2005;48:1–17 [CrossRef][PubMed]
    [Google Scholar]
  25. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual, 3nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  26. Liu W, Xie Y, Ma J, Luo X, Nie P et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 2015;31:3359–3361 [CrossRef][PubMed]
    [Google Scholar]
  27. Wang H, Pan Y, Hu P, Zhu Y, Li J et al. The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol 2014;69:65–74 [CrossRef][PubMed]
    [Google Scholar]
  28. Pan Y, Liu G, Yang H, Tian Y, Tan H. The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 2009;72:710–723 [CrossRef][PubMed]
    [Google Scholar]
  29. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994;2:28–36[PubMed]
    [Google Scholar]
  30. Bailey TL, Elkan C. The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 1995;3:21–29[PubMed]
    [Google Scholar]
  31. Bailey TL, Boden M, Buske FA, Frith M, Grant CE et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009;37:W202–W208 [CrossRef][PubMed]
    [Google Scholar]
  32. Yu L, Li S, Gao W, Pan Y, Tan H et al. Regulation of myo-inositol catabolism by a GntR-type repressor SCO6974 in Streptomyces coelicolor. Appl Microbiol Biotechnol 2015;99:3141–3153 [CrossRef][PubMed]
    [Google Scholar]
  33. Yin WB, Reinke AW, Szilágyi M, Emri T, Chiang YM et al. bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology 2013;159:77–88 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang X, Wu F, Liu L, Liu X, Che Y et al. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genet Biol 2015;81:221–228 [CrossRef][PubMed]
    [Google Scholar]
  35. Gardiner DM, Cozijnsen AJ, Wilson LM, Pedras MS, Howlett BJ. The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 2004;53:1307–1318 [CrossRef][PubMed]
    [Google Scholar]
  36. Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J et al. Regulation and role of fungal secondary metabolites. Annu Rev Genet 2016;50:371–392 [CrossRef][PubMed]
    [Google Scholar]
  37. Fox EM, Gardiner DM, Keller NP, Howlett BJ. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans. Fungal Genet Biol 2008;45:671–682 [CrossRef][PubMed]
    [Google Scholar]
  38. Bok JW, Chung D, Balajee SA, Marr KA, Andes D et al. GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 2006;74:6761–6768 [CrossRef][PubMed]
    [Google Scholar]
  39. Ehrlich KC, Montalbano BG, Cary JW. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene 1999;230:249–257 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000557
Loading
/content/journal/micro/10.1099/mic.0.000557
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error