1887

Abstract

Clinicians often have to deal with infections that are difficult to control because they are caused by superbugs resistant to many antibiotics. Alternatives to antibiotic treatment include antimicrobial photodynamic therapy (aPDT). The photodynamic process causes bacterial death, inducing oxidative stress through the photoactivation of photosensitizer molecules in the presence of oxygen. No PDT-resistant bacteria have been selected to date, thus the response to photo-oxidative stress in non-phototrophic bacteria needs further investigation. The opportunistic pathogen , in particular, has been shown to be more tolerant to PDT than other micro-organisms. In order to find any genetic determinants involved in PDT-tolerance, a panel of transposon mutants of PAO1 involved in the quorum sensing signalling system and membrane cytoplasmic transport were photoinactivated as part of this study. Two pseudomonas quinolone signalling (PQS) knock-out mutants, and , were as PDT-sensitive as the PAO1 wild-type strains. Two PQS hyperproducer variants, and , were shown to be more tolerant to photo-oxidative stress than the wild-type strain. In the mutant, the hyperpigmentation due to the presence of phenazines could protect cells against PDT stress, while in no pigmentation was detectable. Furthermore, a mutant impaired in an ATP-binding cassette transport involved in maintaining the asymmetry of the outer membrane was significantly more tolerant to photo-oxidative stress than the wild-type strain. These observations support the involvement of quorum sensing and the importance of the bacterial cell envelope when dealing with photo-oxidative stress induced by photodynamic treatment.

Keyword(s): PDT , PQS and Pseudomonas aeruginosa
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000543
2017-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/11/1557.html?itemId=/content/journal/micro/10.1099/mic.0.000543&mimeType=html&fmt=ahah

References

  1. Adegoke AA, Faleye AC, Singh G, Stenström TA. Antibiotic resistant superbugs: assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules 2016; 22:29 [View Article][PubMed]
    [Google Scholar]
  2. Khan SN, Khan AU. Breaking the spell: combating multidrug resistant 'Superbugs'. Front Microbiol 2016; 18:174
    [Google Scholar]
  3. Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M et al. Antimicrobial strategies centered around reactive oxygen species–bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955–989 [View Article][PubMed]
    [Google Scholar]
  4. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A et al. Photoantimicrobials-are we afraid of the light?. Lancet Infect Dis 2017; 17:e49-e55 [View Article][PubMed]
    [Google Scholar]
  5. Sperandio FF, Huang YY, Hamblin MR. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat Antiinfect Drug Discov 2013; 8:108–120 [View Article][PubMed]
    [Google Scholar]
  6. Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M et al. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 2012; 44:490–499 [View Article][PubMed]
    [Google Scholar]
  7. Griffiths M, Sistrom WR, Cohenbazire G, Stanier RY, Calvin M. Function of carotenoids in photosynthesis. Nature 1955; 176:1211–1214 [View Article][PubMed]
    [Google Scholar]
  8. Lipovsky A, Nitzan Y, Friedmann H, Lubart R. Sensitivity of Staphylococcus aureus strains to broadband visible light. Photochem Photobiol 2009; 85:255–260 [View Article][PubMed]
    [Google Scholar]
  9. Philippova TO, Galkin BN, Zinchenko OY, Rusakova MY, Ivanitsa VA et al. The antimicrobial properties of new synthetic porphyrins. J Porphyr Phthalocyanines 2003; 7:755–760 [View Article]
    [Google Scholar]
  10. Orlandi VT, Caruso E, Tettamanti G, Banfi S, Barbieri P. Photoinduced antibacterial activity of two dicationic 5,15-diarylporphyrins. J Photochem Photobiol B 2013; 127:123–132 [View Article][PubMed]
    [Google Scholar]
  11. Orlandi VT, Bolognese F, Chiodaroli L, Tolker-Nielsen T, Barbieri P. Pigments influence the tolerance of Pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. Microbiology 2015; 161:2298–2309 [View Article][PubMed]
    [Google Scholar]
  12. St Denis TG, Huang L, Dai T, Hamblin MR. Analysis of the bacterial heat shock response to photodynamic therapy-mediated oxidative stress. Photochem Photobiol 2011; 87:707–713 [View Article][PubMed]
    [Google Scholar]
  13. Park HJ, Moon YH, Yoon HE, Park YM, Yoon JH et al. Agr function is upregulated by photodynamic therapy for Staphylococcus aureus and is related to resistance to photodynamic therapy. Microbiol Immunol 2013; 57:547–552 [View Article][PubMed]
    [Google Scholar]
  14. Pezzoni M, Meichtry M, Pizarro RA, Costa CS. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation. J Photochem Photobiol B 2015; 142:129–140 [View Article][PubMed]
    [Google Scholar]
  15. Häussler S, Becker T. The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 2008; 4:e1000166 [View Article][PubMed]
    [Google Scholar]
  16. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009; 12:182–191 [View Article][PubMed]
    [Google Scholar]
  17. Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR et al. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother 2008; 52:3202–3209 [View Article][PubMed]
    [Google Scholar]
  18. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article][PubMed]
    [Google Scholar]
  19. Herrero M, de Lorenzo V, Timmis KN. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 1990; 172:6557–6567 [View Article][PubMed]
    [Google Scholar]
  20. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 2005; 55:368–380 [View Article][PubMed]
    [Google Scholar]
  21. Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 2009; 11:1079–1091 [View Article][PubMed]
    [Google Scholar]
  22. Owen JG, Ackerley DF. Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC Microbiol 2011; 11:218 [View Article][PubMed]
    [Google Scholar]
  23. Ghafoor A, Hay ID, Rehm BH. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 2011; 77:5238–5246 [View Article][PubMed]
    [Google Scholar]
  24. O'May C, Tufenkji N. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl Environ Microbiol 2011; 77:3061–3067 [View Article][PubMed]
    [Google Scholar]
  25. Teh KH, Flint S, French N. Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations. Int J Food Microbiol 2010; 143:118–124 [View Article][PubMed]
    [Google Scholar]
  26. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 1998; 28:449–461 [View Article][PubMed]
    [Google Scholar]
  27. Mavrodi DV, Parejko JA, Mavrodi OV, Kwak YS, Weller DM et al. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol 2013; 15:675–686 [View Article][PubMed]
    [Google Scholar]
  28. Palmer GC, Palmer KL, Jorth PA, Whiteley M. Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol 2010; 192:2722–2728 [View Article][PubMed]
    [Google Scholar]
  29. Lee J, Wu J, Deng Y, Wang J, Wang C et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 2013; 9:339–343 [View Article][PubMed]
    [Google Scholar]
  30. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015; 6:26–41 [View Article][PubMed]
    [Google Scholar]
  31. Farrow JM, Sund ZM, Ellison ML, Wade DS, Coleman JP et al. PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 2008; 190:7043–7051 [View Article][PubMed]
    [Google Scholar]
  32. Gallagher LA, Mcknight SL, Kuznetsova MS, Pesci EC, Manoil C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 2002; 184:6472–6480 [View Article][PubMed]
    [Google Scholar]
  33. Déziel E, Lépine F, Milot S, He J, Mindrinos MN et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 2004; 101:1339–1344 [View Article][PubMed]
    [Google Scholar]
  34. Dubern JF, Diggle SP. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 2008; 4:882–888 [View Article][PubMed]
    [Google Scholar]
  35. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 2007; 14:87–96 [View Article][PubMed]
    [Google Scholar]
  36. McDaniel C, Su S, Panmanee W, Lau GW, Browne T et al. A putative ABC transporter permease is necessary for resistance to acidified nitrite and EDTA in Pseudomonas aeruginosa under aerobic and anaerobic planktonic and biofilm conditions. Front Microbiol 2016; 7:291 [View Article][PubMed]
    [Google Scholar]
  37. Kosono S, Haga K, Tomizawa R, Kajiyama Y, Hatano K et al. Characterization of a multigene-encoded sodium/hydrogen antiporter (sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol 2005; 187:5242–5248 [View Article][PubMed]
    [Google Scholar]
  38. Stintzi A, Evans K, Meyer JM, Poole K. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 1998; 166:341–345 [View Article][PubMed]
    [Google Scholar]
  39. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 2003; 50:29–43 [View Article][PubMed]
    [Google Scholar]
  40. Chen L, Duan K. A PhoPQ-regulated ABC transporter system exports tetracycline in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:3016–3024 [View Article][PubMed]
    [Google Scholar]
  41. Cieplik F, Tabenski L, Buchalla W, Maisch T. Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front Microbiol 2014; 5:405 [View Article][PubMed]
    [Google Scholar]
  42. Gougerot-Podicalo MA, Elbim C, Chollet-Martin S. Modulation of the oxidative burst of human neutrophils by pro- and anti-inflammatory cytokines. Pathol Biol 1996; 44:36–41[PubMed]
    [Google Scholar]
  43. Orlandi VT, Rybtke M, Caruso E, Banfi S, Tolker-Nielsen T et al. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1. Biofouling 2014; 30:883–891 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000543
Loading
/content/journal/micro/10.1099/mic.0.000543
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error