1887

Abstract

Cyanobacteria acclimatize to nitrogen deprivation by changing cellular metabolism. The nitrogen-regulated response regulator A (NrrA) is involved in regulation of carbon metabolism in response to nitrogen deprivation. However, it has not been elucidated whether these regulatory functions of NrrA are particular to a few model strains or are general among diverse cyanobacteria. In this study, we showed that regulation and functions of NrrA were highly conserved among β-cyanobacteria, which included physiologically and ecologically diverse strains. All β-cyanobacteria had the nrrA gene, while it was absent in α-cyanobacteria. The canonical NtcA-dependent promoter sequence was found upstream of the nrrA genes in most β-cyanobacteria, and its expression was indeed induced by nitrogen deprivation. Biochemical and physiological analyses of NrrA from phylogenetically distinct cyanobacteria indicated that regulation of NrrA activity and NrrA functions, namely activation of glycogen catabolism, were also common to β-cyanobacteria. These results support the conclusion that NrrA plays an important role in acclimatization to nitrogen deprivation, and that activation of glycogen catabolism is a primitive response to nitrogen deprivation in β-cyanobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000549
2017-10-12
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/11/1711.html?itemId=/content/journal/micro/10.1099/mic.0.000549&mimeType=html&fmt=ahah

References

  1. Badger MR, Hanson D, Price GD. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 2002;29:161–173 [CrossRef]
    [Google Scholar]
  2. Vitousek P, Howarth R. Nitrogen limitation on land and in the sea: how can it occur?. Biogeochemistry 1991;13:87–115 [CrossRef]
    [Google Scholar]
  3. Görl M, Sauer J, Baier T, Forchhammer K. Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival. Microbiology 1998;144:2449–2458 [CrossRef][PubMed]
    [Google Scholar]
  4. Kopf M, Klähn S, Scholz I, Hess WR, Voß B. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria. Sci Rep 2015;5:9560 [CrossRef][PubMed]
    [Google Scholar]
  5. Ludwig M, Bryant DA. Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. Front Microbiol 2012;3:1–15 [CrossRef][PubMed]
    [Google Scholar]
  6. Ehira S, Ohmori M. NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 2006;59:1692–1703 [CrossRef][PubMed]
    [Google Scholar]
  7. Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci USA 2011;108:20130–20135 [CrossRef][PubMed]
    [Google Scholar]
  8. Herrero A, Muro-Pastor AM, Flores E. Nitrogen control in cyanobacteria. J Bacteriol 2001;183:411–425 [CrossRef][PubMed]
    [Google Scholar]
  9. Herrero A, Muro-Pastor AM, Valladares A, Flores E. Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 2004;28:469–487 [CrossRef][PubMed]
    [Google Scholar]
  10. Simm S, Keller M, Selymesi M, Schleiff E. The composition of the global and feature specific cyanobacterial core-genomes. Front Microbiol 2015;6:219 [CrossRef][PubMed]
    [Google Scholar]
  11. Huergo LF, Dixon R. The emergence of 2-oxoglutarate as a master regulator metabolite. Microbiol Mol Biol Rev 2015;79:419–435 [CrossRef][PubMed]
    [Google Scholar]
  12. Muro-Pastor MI, Reyes JC, Florencio FJ. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 2001;276:38320–38328 [CrossRef][PubMed]
    [Google Scholar]
  13. Laurent S, Chen H, Bédu S, Ziarelli F, Peng L et al. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci USA 2005;102:9907–9912 [CrossRef][PubMed]
    [Google Scholar]
  14. Li JH, Laurent S, Konde V, Bédu S, Zhang CC. An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 2003;149:3257–3263 [CrossRef][PubMed]
    [Google Scholar]
  15. Vázquez-Bermúdez MF, Herrero A, Flores E. Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. FEMS Microbiol Lett 2003;221:155–159 [CrossRef][PubMed]
    [Google Scholar]
  16. Tanigawa R, Shirokane M, Maeda Si S, Omata T, Tanaka K et al. Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci USA 2002;99:4251–4255 [CrossRef][PubMed]
    [Google Scholar]
  17. Vázquez-Bermúdez MF, Herrero A, Flores E. 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter. FEBS Lett 2002;512:71–74 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhao MX, Jiang YL, He YX, Chen YF, Teng YB et al. Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc Natl Acad Sci USA 2010;107:12487–12492 [CrossRef][PubMed]
    [Google Scholar]
  19. Muro-Pastor AM, Olmedo-Verd E, Flores E. All4312, an NtcA-regulated two-component response regulator in Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 2006;256:171–177 [CrossRef][PubMed]
    [Google Scholar]
  20. Azuma M, Osanai T, Hirai MY, Tanaka K. A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 2011;52:404–412 [CrossRef][PubMed]
    [Google Scholar]
  21. Ehira S, Ohmori M. NrrA, a nitrogen-regulated response regulator protein, controls glycogen catabolism in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. J Biol Chem 2011;286:38109–38114 [CrossRef][PubMed]
    [Google Scholar]
  22. Liu D, Yang C. The nitrogen-regulated response regulator NrrA controls cyanophycin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2014;289:2055–2071 [CrossRef][PubMed]
    [Google Scholar]
  23. Nakamura Y, Takahashi J, Sakurai A, Inaba Y, Suzuki E et al. Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant Cell Physiol 2005;46:539–545 [CrossRef][PubMed]
    [Google Scholar]
  24. Fay P. Factors influencing dark nitrogen fixation in a blue-green alga. Appl Environ Microbiol 1976;31:376–379[PubMed]
    [Google Scholar]
  25. Gründel M, Scheunemann R, Lockau W, Zilliges Y. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 2012;158:3032–3043 [CrossRef][PubMed]
    [Google Scholar]
  26. Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y et al. Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 2010;76:3153–3159 [CrossRef][PubMed]
    [Google Scholar]
  27. Jackson SA, Eaton-Rye JJ, Bryant DA, Posewitz MC, Davies FK. Dynamics of photosynthesis in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 2015;81:6210–6222 [CrossRef][PubMed]
    [Google Scholar]
  28. Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol 2016;26:2862–2872 [CrossRef][PubMed]
    [Google Scholar]
  29. Klähn S, Hagemann M. Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 2011;13:551–562 [CrossRef][PubMed]
    [Google Scholar]
  30. Tolonen AC, Aach J, Lindell D, Johnson ZI, Rector T et al. Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Mol Syst Biol 2006;2:53 [CrossRef][PubMed]
    [Google Scholar]
  31. Ehira S, Hamano T, Hayashida T, Kojima K, Nakamoto H et al. Conserved temperature-dependent expression of RNA-binding proteins in cyanobacteria with different temperature optima. FEMS Microbiol Lett 2003;225:137–142 [CrossRef][PubMed]
    [Google Scholar]
  32. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 1979;111:1–61 [CrossRef]
    [Google Scholar]
  33. Stevens SE, Patterson CO, Myers J. The production of hydrogen peroxide by blue‐green algae: a survey. J Phycol 1973;9:427–430
    [Google Scholar]
  34. Ogawa T, Terui G. Studies on the growth of Spirulina platensis. On the pure culture of Spirulina platensis. J Ferment Technol 1970;48:361–367
    [Google Scholar]
  35. Fujisawa T, Narikawa R, Maeda SI, Watanabe S, Kanesaki Y et al. CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Res 2017;45:D551–D554 [CrossRef][PubMed]
    [Google Scholar]
  36. Golden JW, Wiest DR. Genome rearrangement and nitrogen fixation in Anabaena blocked by inactivation of xisA gene. Science 1988;242:1421–1423 [CrossRef][PubMed]
    [Google Scholar]
  37. Yoon HS, Golden JW. Heterocyst pattern formation controlled by a diffusible peptide. Science 1998;282:935–938 [CrossRef][PubMed]
    [Google Scholar]
  38. Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CP. Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 1997;179:1998–2005 [CrossRef][PubMed]
    [Google Scholar]
  39. Black TA, Cai Y, Wolk CP. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 1993;9:77–84 [CrossRef][PubMed]
    [Google Scholar]
  40. Pinto FL, Thapper A, Sontheim W, Lindblad P. Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 2009;10:79 [CrossRef][PubMed]
    [Google Scholar]
  41. Ehira S, Ohmori M. NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2006;188:8520–8525 [CrossRef][PubMed]
    [Google Scholar]
  42. Ehira S, Ohmori M. NrrA directly regulates expression of the fraF gene and antisense RNAs for fraE in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 2014;160:844–850 [CrossRef][PubMed]
    [Google Scholar]
  43. Kato H, Watanabe S, Nimura-Matsune K, Chibazakura T, Tozawa Y et al. Exploration of a possible partnership among orphan two-component system proteins in cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 2012;76:1484–1491 [CrossRef][PubMed]
    [Google Scholar]
  44. Yoshimura M, Asai K, Sadaie Y, Yoshikawa H. Interaction of Bacillus subtilis extracytoplasmic function (ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors. Microbiology 2004;150:591–599 [CrossRef][PubMed]
    [Google Scholar]
  45. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014;42:D199–D205 [CrossRef][PubMed]
    [Google Scholar]
  46. Hiraide Y, Oshima K, Fujisawa T, Uesaka K, Hirose Y et al. Loss of cytochrome cM stimulates cyanobacterial heterotrophic growth in the dark. Plant Cell Physiol 2015;56:334–345 [CrossRef][PubMed]
    [Google Scholar]
  47. Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N et al. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci USA 2014;111:11407–11412 [CrossRef][PubMed]
    [Google Scholar]
  48. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 2012;337:1546–1550 [CrossRef][PubMed]
    [Google Scholar]
  49. Fujisawa T, Narikawa R, Okamoto S, Ehira S, Yoshimura H et al. Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res 2010;17:85–103 [CrossRef][PubMed]
    [Google Scholar]
  50. Tsujimoto R, Kamiya N, Fujita Y. Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria. Proc Natl Acad Sci USA 2014;111:6762–6767 [CrossRef][PubMed]
    [Google Scholar]
  51. van Baalen C. Studies on marine blue-green algae. Botanica Marina 1962;4:129–139 [CrossRef]
    [Google Scholar]
  52. Yamaoka T, Satoh K, Katoh S. Photosynthetic activities of a thermophilic blue-green alga. Plant Cell Physiol 1978;19:943–954 [CrossRef]
    [Google Scholar]
  53. Lukat GS, Mccleary WR, Stock AM, Stock JB. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci USA 1992;89:718–722 [CrossRef][PubMed]
    [Google Scholar]
  54. Osanai T, Oikawa A, Numata K, Kuwahara A, Iijima H et al. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803. Plant Physiol 2014;164:1831–1841 [CrossRef][PubMed]
    [Google Scholar]
  55. Markson JS, Piechura JR, Puszynska AM, O'Shea EK. Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 2013;155:1396–1408 [CrossRef][PubMed]
    [Google Scholar]
  56. Takai N, Nakajima M, Oyama T, Kito R, Sugita C et al. A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci USA 2006;103:12109–12114 [CrossRef][PubMed]
    [Google Scholar]
  57. Ashby MK, Houmard J. Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev 2006;70:472–509 [CrossRef][PubMed]
    [Google Scholar]
  58. Ohmori M, Ikeuchi M, Sato N, Wolk P, Kaneko T et al. Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaenaanabaena sp. strain PCC 7120. DNA Res 2001;8:271–284 [CrossRef][PubMed]
    [Google Scholar]
  59. López-Redondo ML, Moronta F, Salinas P, Espinosa J, Cantos R et al. Environmental control of phosphorylation pathways in a branched two-component system. Mol Microbiol 2010;78:475–489 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000549
Loading
/content/journal/micro/10.1099/mic.0.000549
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error