- Volume 156, Issue 11, 2010
Volume 156, Issue 11, 2010
- Environmental And Evolutionary Microbiology
-
-
-
The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea
In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The rkpJ- and rkpU-encoded products are orthologous to Escherichia coli proteins involved in capsule export. S. fredii HH103 mutant derivatives were contructed in both genes. To our knowledge, this is the first time that the role of rkpU in KPS production has been studied in rhizobia. Both rkpJ and rkpU mutants were unable to produce KPS. The rkpU derivative also showed alterations in its lipopolysaccharide (LPS). Neither KPS production nor rkpJ and rkpU expression was affected by the presence of the flavonoid genistein. Soybean (Glycine max) plants inoculated with the S. fredii HH103 rkpU and rkpJ mutants showed reduced nodulation and clear symptoms of nitrogen starvation. However, neither the rkpJ nor the rkpU mutants were significantly impaired in their symbiotic interaction with cowpea (Vigna unguiculata). Thus, we demonstrate for the first time to our knowledge the involvement of the rkpU gene in rhizobial KPS production and also show that the symbiotic relevance of the S. fredii HH103 KPS depends on the specific bacterium–legume interaction.
-
-
- Microbial Pathogenicity
-
-
-
Mapping the epithelial-cell-binding domain of the Aggregatibacter actinomycetemcomitans autotransporter adhesin Aae
The Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) binds selectively to buccal epithelial cells (BECs) of human and Old World primates by means of the outer-membrane autotransporter protein Aae. We speculated that the exposed N-terminal portion of the passenger domain of Aae would mediate binding to BECs. By using a series of plasmids that express full-length or truncated Aae proteins in Escherichia coli, we found that the BEC-binding domain of Aae was located in the N-terminal surface-exposed region of the protein, specifically in the region spanning amino acids 201–284 just upstream of the repeat region within the passenger domain. Peptides corresponding to amino acids 201–221, 222–238 and 201–240 were synthesized and tested for their ability to reduce Aae-mediated binding to BECs based on results obtained with truncated Aae proteins expressed in E. coli. BEC-binding of E. coli expressing Aae was reduced by as much as 50 % by pre-treatment of BECs with a 40-mer peptide (201–240; P40). Aae was also shown to mediate binding to cultured human epithelial keratinocytes (TW2.6), OBA9 and TERT, and endothelial (HUVEC) cells. Pre-treatment of epithelial cells with P40 resulted in a dose-dependent reduction in binding and reduced the binding of both full-length and truncated Aae proteins expressed in E. coli, as well as Aae expressed in Aa. Fluorescently labelled P40 peptides reacted in a dose-dependent manner with BEC receptors. We propose that these proof-of-principle experiments demonstrate that peptides can be designed to interfere with Aa binding mediated by host-cell receptors specific for Aae adhesins.
-
-
-
-
Genes required for the synthesis of heptose-containing oligosaccharide outer core extensions in Haemophilus influenzae lipopolysaccharide
Heptose-containing oligosaccharides (OSs) are found in the outer core of the lipopolysaccharide (LPS) of a subset of non-typable Haemophilus influenzae (NTHi) strains. Candidate genes for the addition of either l-glycero-d-manno-heptose (ld-Hep) or d-glycero-d-manno-heptose (dd-Hep) and subsequent hexose sugars to these OSs have been identified from the recently completed genome sequences available for NTHi strains. losA1/losB1 and losA2/losB2 are two sets of related genes in which losA has homology to genes encoding glycosyltransferases and losB to genes encoding heptosyltransferases. Each set of genes is variably present across NTHi strains and is located in a region of the genome with an alternative gene organization between strains that contributes to LPS heterogeneity. Dependent upon the strain background, the LPS phenotype, structure and serum resistance of strains mutated in these genes were altered when compared with the relevant parent strain. Our studies confirm that losB1 and losB2 usually encode dd-heptosyl- and ld-heptosyl transferases, respectively, and that losA1 and losA2 encode glycosyltransferases that play a role in OS extensions of NTHi LPS.
-
-
-
Deletion of the Candida albicans histidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall β-1,3-glucans
More LessThe pathogenic fungus Candida albicans is able to cover its most potent proinflammatory cell wall molecules, the β-glucans, underneath a dense mannan layer, so that the pathogen becomes partly invisible for immune cells such as phagocytes. As the C. albicans histidine kinases Chk1p, Cos1p and CaSln1p had been reported to be involved in virulence and cell wall biosynthesis, we investigated whether deletion of the respective genes influences the activity of phagocytes against C. albicans. We found that among all histidine kinase genes, CHK1 plays a prominent role in phagocyte activation. Uptake of the deletion mutant Δchk1 as well as the acidification of Δchk1-carrying phagosomes was significantly increased compared with the parental strain. These improved activities could be correlated with an enhanced accessibility of the mutant β-1,3-glucans for immunolabelling. In addition, any inhibition of β-1,3-glucan-mediated phagocytosis resulted in a reduced uptake of Δchk1, while ingestion of the parental strain was hardly affected. Moreover, deletion of CHK1 caused an enhanced release of interleukins 6 and 10, indicating a stronger activation of the β-1,3-glucan receptor dectin-1. In conclusion, the Chk1p protein is likely to be involved in masking β-1,3-glucans from immune recognition. As there are no homologues of fungal histidine kinases in mammals, Chk1p has to be considered as a promising target for new antifungal agents.
-
-
-
ClgR regulation of chaperone and protease systems is essential for Mycobacterium tuberculosis parasitism of the macrophage
Chaperone and protease systems play essential roles in cellular homeostasis and have vital functions in controlling the abundance of specific cellular proteins involved in processes such as transcription, replication, metabolism and virulence. Bacteria have evolved accurate regulatory systems to control the expression and function of chaperones and potentially destructive proteases. Here, we have used a combination of transcriptomics, proteomics and targeted mutagenesis to reveal that the clp gene regulator (ClgR) of Mycobacterium tuberculosis activates the transcription of at least ten genes, including four that encode protease systems (ClpP1/C, ClpP2/C, PtrB and HtrA-like protease Rv1043c) and three that encode chaperones (Acr2, ClpB and the chaperonin Rv3269). Thus, M. tuberculosis ClgR controls a larger network of protein homeostatic and regulatory systems than ClgR in any other bacterium studied to date. We demonstrate that ClgR-regulated transcriptional activation of these systems is essential for M. tuberculosis to replicate in macrophages. Furthermore, we observe that this defect is manifest early in infection, as M. tuberculosis lacking ClgR is deficient in the ability to control phagosome pH 1 h post-phagocytosis.
-
-
-
Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella
More LessLarvae of Galleria mellonella, the greater wax moth, provide an alternative infection model for many human pathogens as they are amenable to use at elevated incubation temperatures (37 °C). This study and a parallel study by Mukherjee et al. [Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A. & Chakraborty, T. (2010). Appl Environ Microbiol 76, 310–317] establish this insect host as an appropriate model to investigate the pathogenesis of Listeria species. In this study we show that inoculation with Listeria monocytogenes initiates a dynamic infection in G. mellonella and that production of the cytolysin listeriolysin O (LLO) is necessary for toxicity and bacterial growth. Production of LLO by the non-pathogenic species Lactococcus lactis is sufficient to induce mortality in the insect model. We employed real-time bioluminescence imaging to examine the dynamics of listerial growth and virulence gene expression in the G. mellonella model. Analysis of lux promoter fusions demonstrated significant induction of virulence gene expression upon introduction of the pathogen into insects at both 30 and 37 °C. The host response to listerial infection was examined which demonstrated that haemocyte destruction accompanies L. monocytogenes pathogenesis and is preceded by activation of the phenoloxidase system. Furthermore, we demonstrate that Listeria innocua is pathogenic to G. mellonella through a persistence mechanism that implicates an alternative mechanism for pathogenicity in this model.
-
-
-
A streptococcal effector protein that inhibits Porphyromonas gingivalis biofilm development
More LessDental plaque formation is a developmental process involving cooperation and competition within a diverse microbial community, approximately 70 % of which is composed of an array of streptococci during the early stages of supragingival plaque formation. In this study, 79 cell-free culture supernatants from a variety of oral streptococci were screened to identify extracellular compounds that inhibit biofilm formation by the oral anaerobe Porphyromonas gingivalis strain 381. The majority of the streptococcal supernatants (61 isolates) resulted in lysis of P. gingivalis cells, and some (17 isolates) had no effect on cell viability, growth or biofilm formation. One strain, however, produced a supernatant that abolished biofilm formation without affecting growth rate. Analysis of this activity led to the discovery that a 48 kDa protein was responsible for the inhibition. Protein sequence identification and enzyme activity assays identified the effector protein as an arginine deiminase. To identify the mechanism(s) by which this protein inhibits biofilm formation, we began by examining the expression levels of genes encoding fimbrial subunits; surface structures known to be involved in biofilm development. Quantitative RT-PCR analysis revealed that exposure of P. gingivalis cells to this protein for 1 h resulted in the downregulation of genes encoding proteins that are the major subunits of two distinct types of thin, single-stranded fimbriae (fimA and mfa1). Furthermore, this downregulation occurred in the absence of arginine deiminase enzymic activity. Hence, our data indicate that P. gingivalis can sense this extracellular protein, produced by an oral streptococcus (Streptococcus intermedius), and respond by downregulating expression of cell-surface appendages required for attachment and biofilm development.
-
- Physiology And Biochemistry
-
-
-
Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum
More LessTranscriptional analysis was performed on Clostridium acetobutylicum with the goal of identifying sugar-specific mechanisms for the transcriptional regulation of transport and metabolism genes. DNA microarrays were used to determine transcript levels from total RNA isolated from cells grown on media containing eleven different carbohydrates, including two pentoses (xylose, arabinose), four hexoses (glucose, mannose, galactose, fructose), four disaccharides (sucrose, lactose, maltose, cellobiose) and one polysaccharide (starch). Sugar-specific induction of many transport and metabolism genes indicates that these processes are regulated at the transcriptional level and are subject to carbon catabolite repression. The results show that C. acetobutylicum utilizes symporters and ATP-binding cassette (ABC) transporters for the uptake of pentose sugars, while disaccharides and hexoses are primarily taken up by phosphotransferase system (PTS) transporters and a gluconate : H+ (GntP) transporter. The transcription of some transporter genes was induced by specific sugars, while others were induced by a subset of the sugars tested. Sugar-specific transport roles are suggested, based on expression comparisons, for various transporters of the PTS, the ABC superfamily and members of the major facilitator superfamily (MFS), including the GntP symporter family and the glycoside-pentoside-hexuronide (GPH)-cation symporter family. Additionally, updates to the C. acetobutylicum genome annotation are proposed, including the identification of genes likely to encode proteins involved in the metabolism of arabinose and xylose via the pentose phosphate pathway.
-
-
-
-
Mycobacterium marinum MMAR_2380, a predicted transmembrane acyltransferase, is essential for the presence of the mannose cap on lipoarabinomannan
Lipoarabinomannan (LAM) is a major glycolipid in the mycobacterial cell envelope. LAM consists of a mannosylphosphatidylinositol (MPI) anchor, a mannan core and a branched arabinan domain. The termini of the arabinan branches can become substituted with one to three α(1→2)-linked mannosyl residues, the mannose cap, producing ManLAM. ManLAM has been associated with a range of different immunomodulatory properties of Mycobacterium tuberculosis during infection of the host. In some of these effects, the presence of the mannose cap on ManLAM appears to be crucial for its activity. So far, in the biosynthesis of the mannose cap on ManLAM, two enzymes have been reported to be involved: a mannosyltransferase that adds the first mannosyl residue of the mannose caps to the arabinan domain of LAM, and another mannosyltransferase that elongates the mannose cap up to three mannosyl residues. Here, we report that a third gene is involved, MMAR_2380, which is the Mycobacterium marinum orthologue of Rv1565c. MMAR_2380 encodes a predicted transmembrane acyltransferase. In M. marinum ΔMMAR_2380, the LAM arabinan domain is still intact, but the mutant LAM lacks the mannose cap. Additional effects of mutation of MMAR_2380 on LAM were observed: a higher degree of branching of both the arabinan domain and the mannan core, and a decreased incorporation of [1,2-14C]acetate into the acyl chains in mutant LAM as compared with the wild-type form. This latter effect was also observed for related lipoglycans, i.e. lipomannan (LM) and phosphatidylinositol mannosides (PIMs). Furthermore, the mutant strain showed increased aggregation in liquid cultures as compared with the wild-type strain. All phenotypic traits of M. marinum ΔMMAR_2380, the deficiency in the mannose cap on LAM and changes at the cell surface, could be reversed by complementing the mutant strain with MMAR_2380. Strikingly, membrane preparations of the mutant strain still showed enzymic activity for the arabinan mannose-capping mannosyltransferase similar to that of the wild-type strain. Although the exact function of MMAR_2380 remains unknown, we show that the protein is essential for the presence of a mannose cap on LAM.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)