1887

Abstract

In this work, the role of the and genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The - and -encoded products are orthologous to proteins involved in capsule export. HH103 mutant derivatives were contructed in both genes. To our knowledge, this is the first time that the role of in KPS production has been studied in rhizobia. Both and mutants were unable to produce KPS. The derivative also showed alterations in its lipopolysaccharide (LPS). Neither KPS production nor and expression was affected by the presence of the flavonoid genistein. Soybean () plants inoculated with the HH103 and mutants showed reduced nodulation and clear symptoms of nitrogen starvation. However, neither the nor the mutants were significantly impaired in their symbiotic interaction with cowpea (). Thus, we demonstrate for the first time to our knowledge the involvement of the gene in rhizobial KPS production and also show that the symbiotic relevance of the HH103 KPS depends on the specific bacterium–legume interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042499-0
2010-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3398.html?itemId=/content/journal/micro/10.1099/mic.0.042499-0&mimeType=html&fmt=ahah

References

  1. Becker, A., Schimdt, M., Jäger, W. & Pühler, A. ( 1995; ). New gentamicin-resistance and lacZ promoter–probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 162, 37–39.[CrossRef]
    [Google Scholar]
  2. Becker, A., Fraysse, N. & Sharypova, L. ( 2005; ). Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant Microbe Interact 18, 899–905.[CrossRef]
    [Google Scholar]
  3. Beringer, J. E. ( 1974; ). R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84, 188–198.[CrossRef]
    [Google Scholar]
  4. Buendía-Clavería, A. M., Moussaid, A., Ollero, F. J., Vinardell, J. M., Torres, A., Moreno, J., Gil-Serrano, A. M., Rodríguez-Carvajal, M. A., Tejero-Mateo, P. & other authors ( 2003; ). A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology 149, 1807–1818.[CrossRef]
    [Google Scholar]
  5. Collins, R. F. & Derrick, J. P. ( 2007; ). Wza: a new structural paradigm for outer membrane secretory proteins? Trends Microbiol 15, 96–100.[CrossRef]
    [Google Scholar]
  6. Crespo-Rivas, J. C., Margaret, I., Pérez-Montaño, F., López-Baena, F. J., Vinardell, J. M., Ollero, F. J., Moreno, J., Ruiz-Sainz, J. E. & Buendía-Clavería, A. M. ( 2007; ). A pyrF auxothrophic mutant of Sinorhizobium fredii HH103 impaired in its symbiotic interactions with soybean and other legumes. Int Microbiol 10, 169–176.
    [Google Scholar]
  7. Crespo-Rivas, J. C., Margaret, I., Hidalgo, A., Buendía-Clavería, A. M., Ollero, F. J., López-Baena, F. J., Murdoch, P. S., Rodríguez-Carvajal, M. A., Soria-Díaz, M. E. & other authors ( 2009; ). Sinorhizobium fredii HH103 cgs mutants are unable to nodulate determinate- and indeterminate-nodule forming legumes and overproduce an altered EPS. Mol Plant Microbe Interact 22, 575–588.[CrossRef]
    [Google Scholar]
  8. Downie, J. A. ( 2010; ). The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34, 150–170.[CrossRef]
    [Google Scholar]
  9. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  10. Fraysse, N., Couderc, F. & Poinsot, V. ( 2003; ). Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. Eur J Biochem 270, 1365–1380.[CrossRef]
    [Google Scholar]
  11. Fraysse, N., Lindner, B., Kaczynski, Z., Sharypova, L., Holst, O., Niehaus, K. & Poinsot, V. ( 2005; ). Sinorhizobium meliloti strain 1021 produces a low-molecular mass capsular polysaccharide that is a homopolymer of 3-deoxy-d-manno-oct-2-ulosonic acid harbouring a phospholipidic anchor. Glycobiology 15, 101–108.
    [Google Scholar]
  12. Gibson, K. E., Kobayashi, H. & Walker, G. C. ( 2008; ). Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42, 413–441.[CrossRef]
    [Google Scholar]
  13. Gil-Serrano, A. M., Rodríguez-Carvajal, M. A., Tejero Mateo, P., Espartero, J. L., Menéndez, M., Corzo, J., Ruiz-Sainz, J. E. & Buendía-Clavería, A. M. ( 1999; ). Structural determination of a 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103. Biochem J 342, 527–535.[CrossRef]
    [Google Scholar]
  14. Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E. & Walker, G. C. ( 2007; ). How rhizobial symbionts invade plants: The SinorhizobiumMedicago model. Nat Rev Microbiol 5, 619–633.[CrossRef]
    [Google Scholar]
  15. Kannenberg, E. L., Reuhs, B. L., Fosberg, L. S. & Carlson, R. W. ( 1998; ). Lipopolysaccharides and K-antigens: their structures, biosynthesis, and functions. In The Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria, pp. 119–154. Edited by Spaink, H. P., Kondorosi, A. & Hooykaas, P. J. J.. Dordrecht, Netherlands. : Kluwer Academic Publishers.
    [Google Scholar]
  16. Kiss, E., Reuhs, B. L., Kim, J. S., Kereszt, A., Petrovics, G., Putnoky, P., Dusha, I., Carlson, R. W. & Kondorosi, A. ( 1997; ). The rkpGHI and -J genes are involved in capsular polysaccharide production by Rhizobium meliloti. J Bacteriol 179, 2132–2140.
    [Google Scholar]
  17. Kiss, E., Kereszt, A., Barta, F., Stephens, S., Reuhs, B. L., Kondorosi, A. & Putnoky, P. ( 2001; ). The rkp-3 gene region of Sinorhizobium meliloti Rm41 contains strain-specific genes that determine K antigen structure. Mol Plant Microbe Interact 14, 1395–1403.[CrossRef]
    [Google Scholar]
  18. Lamrabet, Y., Bellogín, R. A., Cubo, T., Espuny, R., Gil, A., Krishnan, H. B., Megias, M., Ollero, F. J., Pueppke, S. G. & other authors ( 1999; ). Mutation in GDP-Fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant Microbe Interact 12, 207–217.[CrossRef]
    [Google Scholar]
  19. Le Quéré, A. J. L., Deakin, W. K., Schmeisser, C., Carlson, R. W., Streit, W. R., Broughton, W. J. & Scott Forsberg, L. ( 2006; ). Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp. NGR234. J Biol Chem 281, 28981–28992.[CrossRef]
    [Google Scholar]
  20. Madinabeitia, N., Bellogín, R. A., Buendía-Clavería, A., Camacho, M., Cubo, T., Espuny, M. R., Gil-Serrano, A. M., Lyra, M. C. C. P., Moussaid, A. & other authors ( 2002; ). Sinorhizobium fredii HH103 has a truncated nolO gene due to a –1 frameshift mutation that is conserved among other geographically distant S. fredii strains. Mol Plant Microbe Interact 15, 150–159.[CrossRef]
    [Google Scholar]
  21. Masson-Boivin, C., Giraud, E., Perret, X. & Batut, J. ( 2009; ). Establishing nitrogen-fixing simbiosis with legumes: how many Rhizobium recipes? Trends Microbiol 17, 458–466.[CrossRef]
    [Google Scholar]
  22. Müller, M. G., Forsberg, L. S. & Keating, D. H. ( 2009; ). The rkp-1 cluster is required for secretion of Kdo homopolymeric capsular polysaccharide in Sinorhizobium meliloti strain Rm1021. J Bacteriol 191, 6988–7000.[CrossRef]
    [Google Scholar]
  23. Pálvölgyi, A., Deák, V., Poinsot, V., Nagy, T., Nagy, E., Kerepesi, I. & Putnoky, P. ( 2009; ). Genetic analysis of the rkp-3 gene region in Sinorhizobium meliloti 41: rkpY directs capsular polysaccharide synthesis to KR5 antigen production. Mol Plant Microbe Interact 22, 1422–1430.[CrossRef]
    [Google Scholar]
  24. Parada, M., Vinardell, J. M., Ollero, F. J., Hidalgo, A., Guitiérrez, R., Buendía-Clavería, A. M., Lei, W., Margaret, I., López-Baena, F. J. & other authors ( 2006; ). Sinorhizobium fredii HH103 mutants affected in capsular polysaccaride (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant Microbe Interact 19, 43–52.[CrossRef]
    [Google Scholar]
  25. Pellock, B. J., Cheng, H. P. & Walker, G. C. ( 2000; ). Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182, 4310–4318.[CrossRef]
    [Google Scholar]
  26. Pobigaylo, N., Szymczak, S., Nattkemper, T. W. & Becker, A. ( 2008; ). Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Mol Plant Microbe Interact 21, 219–231.[CrossRef]
    [Google Scholar]
  27. Prentki, P. & Krisch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.[CrossRef]
    [Google Scholar]
  28. Reuhs, B. L., Carlson, R. W. & Kim, J. S. ( 1993; ). Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-d-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J Bacteriol 175, 3570–3580.
    [Google Scholar]
  29. Reuhs, B. L., Kim, J. S., Badgett, A. & Carlson, R. W. ( 1994; ). Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol Plant Microbe Interact 7, 240–247.[CrossRef]
    [Google Scholar]
  30. Reuhs, B. L., Geller, D. P., Kim, J. S., Fox, J. E., Kolli, V. S. K. & Pueppke, S. G. ( 1998; ). Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol 64, 4930–4938.
    [Google Scholar]
  31. Rodríguez-Carvajal, M. A., Tejero-Mateo, P., Espartero, J. L., Ruiz-Sainz, J. E., Buendía-Clavería, A. M., Ollero, F. J., Yang, S. S. & Gil-Serrano, A. M. ( 2001; ). Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast-growing soya bean-nodulating bacterium isolated from an arid region of China. Biochem J 357, 505–511.[CrossRef]
    [Google Scholar]
  32. Rodríguez-Carvajal, M. A., Rodrigues, J. A., Soria-Díaz, M. E., Tejero-Mateo, P., Buendía-Clavería, A. M., Gutiérrez, R., Ruiz-Sainz, J. E., Thomas-Oates, J. & Gil-Serrano, A. M. ( 2005; ). Structural analysis of the capsular polysaccharide from Sinorhizobium fredii HWG35. Biomacromolecules 6, 1448–1456.[CrossRef]
    [Google Scholar]
  33. Saldaña, G., Martinez-Alcántara, V., Vinardell, J. M., Bellogín, R., Ruíz-Sainz, J. E. & Balatti, P. A. ( 2003; ). Genetic diversity of fast-growing rhizobia that nodulate soybean (Glycine max L. Merr). Arch Microbiol 180, 45–52.[CrossRef]
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  35. Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. & Puhler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  36. Simon, R. ( 1984; ). High frequency mobilization of Gram-negative bacterial replicons by the in vivo constructed Tn5-Mob transposon. Mol Gen Genet 196, 413–420.[CrossRef]
    [Google Scholar]
  37. Simsek, S., Ojanen-Reuhs, T., Marie, C. & Reuhs, B. L. ( 2009; ). An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM- and nodD1-dependent. Carbohydr Res 344, 1947–1950.[CrossRef]
    [Google Scholar]
  38. Vinardell, J. M., López-Baena, F. J., Hidalgo, A., Ollero, F. J., Bellogín, R., Espuny, M. R., Temprano, F., Romero, F., Krishnan, H. B. & other authors ( 2004a; ). The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner. Arch Microbiol 181, 144–154.[CrossRef]
    [Google Scholar]
  39. Vinardell, J. M., Ollero, F. J., Hidalgo, A., López-Baena, F. J., Medina, C., Ivanov-Vangelov, K., Parada, M., Madinabeitia, N., Espuny, M. R. & other authors ( 2004b; ). NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103. Mol Plant Microbe Interact 17, 676–685.[CrossRef]
    [Google Scholar]
  40. Vincent, J. M. ( 1970; ). Appendix III. The modified Fåhraeus slide technique. In A Manual for the Practical Study of Root Nodule Bacteria, pp. 144–145. Edited by Vincent, J. M.. Oxford. : Blackwell Scientific.
    [Google Scholar]
  41. Westphal, O. & Jann, K. ( 1965; ). Bacterial lipopolysaccharides, extraction with phenol-water and further application of the procedure. Meth Carbohydr Chem 5, 83–91.
    [Google Scholar]
  42. Whitfield, C. ( 2006; ). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75, 39–68.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042499-0
Loading
/content/journal/micro/10.1099/mic.0.042499-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error