1887

Abstract

Larvae of , the greater wax moth, provide an alternative infection model for many human pathogens as they are amenable to use at elevated incubation temperatures (37 °C). This study and a parallel study by Mukherjee [Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A. & Chakraborty, T. (2010). , 310–317] establish this insect host as an appropriate model to investigate the pathogenesis of species. In this study we show that inoculation with initiates a dynamic infection in and that production of the cytolysin listeriolysin O (LLO) is necessary for toxicity and bacterial growth. Production of LLO by the non-pathogenic species is sufficient to induce mortality in the insect model. We employed real-time bioluminescence imaging to examine the dynamics of listerial growth and virulence gene expression in the model. Analysis of promoter fusions demonstrated significant induction of virulence gene expression upon introduction of the pathogen into insects at both 30 and 37 °C. The host response to listerial infection was examined which demonstrated that haemocyte destruction accompanies pathogenesis and is preceded by activation of the phenoloxidase system. Furthermore, we demonstrate that is pathogenic to through a persistence mechanism that implicates an alternative mechanism for pathogenicity in this model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040782-0
2010-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3456.html?itemId=/content/journal/micro/10.1099/mic.0.040782-0&mimeType=html&fmt=ahah

References

  1. Akya A., Pointon A., Thomas C. 2009a; Viability of Listeria monocytogenes in co-culture with Acanthamoeba spp. FEMS Microbiol Ecol 70:20–29
    [Google Scholar]
  2. Akya A., Pointon A., Thomas C. 2009b; Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitol Res 105:1375–1383
    [Google Scholar]
  3. Aperis G., Fuchs B. B., Anderson C. A., Warner J. E., Calderwood S. B., Mylonakis E. 2007; Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 9:729–734
    [Google Scholar]
  4. Bahey-El-Din M., Casey P. G., Griffin B. T., Gahan C. G. 2008; Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. Vaccine 26:5304–5314
    [Google Scholar]
  5. Bergin D., Murphy L., Keenan J., Clynes M., Kavanagh K. 2006; Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect 8:2105–2112
    [Google Scholar]
  6. Bidla G., Hauling T., Dushay M. S., Theopold U. 2009; Activation of insect phenoloxidase after injury: endogenous versus foreign elicitors. J Innate Immun 1:301–308
    [Google Scholar]
  7. Bron P. A., Monk I. R., Corr S. C., Hill C., Gahan C. G. 2006; Novel luciferase reporter system for in vitro and organ-specific monitoring of differential gene expression in Listeria monocytogenes. Appl Environ Microbiol 72:2876–2884
    [Google Scholar]
  8. Bubert A., Sokolovic Z., Chun S. K., Papatheodorou L., Simm A., Goebel W. 1999; Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261:323–336
    [Google Scholar]
  9. Buchrieser C., Rusniok C., Kunst F., Cossart P., Glaser P. 2003; Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol Med Microbiol 35:207–213
    [Google Scholar]
  10. Camejo A., Buchrieser C., Couve E., Carvalho F., Reis O., Ferreira P., Sousa S., Cossart P., Cabanes D. 2009; In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 5:e1000449
    [Google Scholar]
  11. Chakraborty T., Leimeister-Wachter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S. 1992; Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174:568–574
    [Google Scholar]
  12. Chatterjee S. S., Hossain H., Otten S., Kuenne C., Kuchmina K., Machata S., Domann E., Chakraborty T., Hain T. 2006; Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74:1323–1338
    [Google Scholar]
  13. Cheng L. W., Portnoy D. A. 2003; Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell Microbiol 5:875–885
    [Google Scholar]
  14. Decatur A. L., Portnoy D. A. 2000; A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992–995
    [Google Scholar]
  15. Disson O., Grayo S., Huillet E., Nikitas G., Langa-Vives F., Dussurget O., Ragon M., Le Monnier A., Babinet C. other authors 2008; Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118
    [Google Scholar]
  16. Disson O., Nikitas G., Grayo S., Dussurget O., Cossart P., Lecuit M. 2009; Modeling human listeriosis in natural and genetically engineered animals. Nat Protoc 4:799–810
    [Google Scholar]
  17. Eleftherianos I., Marokhazi J., Millichap P. J., Hodgkinson A. J., Sriboonlert A., ffrench-Constant R. H., Reynolds S. E. 2006; Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem Mol Biol 36:517–525
    [Google Scholar]
  18. Ermolaeva S., Novella S., Vega Y., Ripio M. T., Scortti M., Vazquez-Boland J. A. 2004; Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor. Mol Microbiol 52:601–611
    [Google Scholar]
  19. Fedhila S., Buisson C., Dussurget O., Serror P., Glomski I. J., Liehl P., Lereclus D., Nielsen-LeRoux C. 2010; Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol 103:24–29
    [Google Scholar]
  20. Freitag N. E., Port G. C., Miner M. D. 2009; Listeria monocytogenes – from saprophyte to intracellular pathogen. Nat Rev Microbiol 7:623–628
    [Google Scholar]
  21. Garner M. R., Njaa B. L., Wiedmann M., Boor K. J. 2006; Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun 74:876–886
    [Google Scholar]
  22. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P. other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  23. Goetz M., Bubert A., Wang G., Chico-Calero I., Vazquez-Boland J. A., Beck M., Slaghuis J., Szalay A. A., Goebel W. 2001; Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc Natl Acad Sci U S A 98:12221–12226
    [Google Scholar]
  24. Greene S. L., Freitag N. E. 2003; Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis. Microbiology 149:111–120
    [Google Scholar]
  25. Hamon M., Bierne H., Cossart P. 2006; Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434
    [Google Scholar]
  26. Jander G., Rahme L. G., Ausubel F. M. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845
    [Google Scholar]
  27. Joseph B., Przybilla K., Stuhler C., Schauer K., Slaghuis J., Fuchs T. M., Goebel W. 2006; Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568
    [Google Scholar]
  28. Kanost M. R., Jiang H., Yu X. Q. 2004; Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198:97–105
    [Google Scholar]
  29. Karrer F. M., Reitz B. L., Hao L., Lafferty K. J. 1992; Fluorescein labeling of murine hepatocytes for identification after intrahepatic transplantation. Transplant Proc 24:2820–2821
    [Google Scholar]
  30. Kavanagh K., Reeves E. P. 2004; Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28:101–112
    [Google Scholar]
  31. Kurz C. L., Ewbank J. J. 2007; Infection in a dish: high-throughput analyses of bacterial pathogenesis. Curr Opin Microbiol 10:10–16
    [Google Scholar]
  32. Lecuit M. 2007; Human listeriosis and animal models. Microbes Infect 9:1216–1225
    [Google Scholar]
  33. Levraud J. P., Disson O., Kissa K., Bonne I., Cossart P., Herbomel P., Lecuit M. 2009; Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun 77:3651–3660
    [Google Scholar]
  34. Mansfield B. E., Dionne M. S., Schneider D. S., Freitag N. E. 2003; Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5:901–911
    [Google Scholar]
  35. McGann P., Ivanek R., Wiedmann M., Boor K. J. 2007; Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the listeriae. Appl Environ Microbiol 73:2806–2814
    [Google Scholar]
  36. Mukherjee K., Altincicek B., Hain T., Domann E., Vilcinskas A., Chakraborty T. 2010; Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76:310–317
    [Google Scholar]
  37. Mylonakis E., Moreno R., El Khoury J. B., Idnurm A., Heitman J., Calderwood S. B., Ausubel F. M., Diener A. 2005; Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73:3842–3850
    [Google Scholar]
  38. Nadon C. A., Bowen B. M., Wiedmann M., Boor K. J. 2002; Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 70:3948–3952
    [Google Scholar]
  39. Peel M., Donachie W., Shaw A. 1988; Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and Western blotting. J Gen Microbiol 134:2171–2178
    [Google Scholar]
  40. Portnoy D. A., Jacks P. S., Hinrichs D. J. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471
    [Google Scholar]
  41. Riedel C. U., Monk I. R., Casey P. G., Morrissey D., O'Sullivan G. C., Tangney M., Hill C., Gahan C. G. 2007; Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol 73:3091–3094
    [Google Scholar]
  42. Riedel C. U., Monk I. R., Casey P. G., Waidmann M. S., Gahan C. G., Hill C. 2009; AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71:1177–1189
    [Google Scholar]
  43. Sheehan B., Klarsfeld A., Msadek T., Cossart P. 1995; Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J Bacteriol 177:6469–6476
    [Google Scholar]
  44. Sleator R. D., Watson D., Hill C., Gahan C. G. 2009; The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 155:2463–2475
    [Google Scholar]
  45. Thomsen L. E., Slutz S. S., Tan M. W., Ingmer H. 2006; Caenorhabditis elegans is a model host for Listeria monocytogenes. Appl Environ Microbiol 72:1700–1701
    [Google Scholar]
  46. Wilson R. L., Tvinnereim A. R., Jones B. D., Harty J. T. 2001; Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting. Infect Immun 69:5016–5024
    [Google Scholar]
  47. Yano T., Mita S., Ohmori H., Oshima Y., Fujimoto Y., Ueda R., Takada H., Goldman W. E., Fukase K. V. other authors 2008; Autophagic control of Listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9:908–916
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040782-0
Loading
/content/journal/micro/10.1099/mic.0.040782-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error