1887

Abstract

Larvae of , the greater wax moth, provide an alternative infection model for many human pathogens as they are amenable to use at elevated incubation temperatures (37 °C). This study and a parallel study by Mukherjee [Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A. & Chakraborty, T. (2010). , 310–317] establish this insect host as an appropriate model to investigate the pathogenesis of species. In this study we show that inoculation with initiates a dynamic infection in and that production of the cytolysin listeriolysin O (LLO) is necessary for toxicity and bacterial growth. Production of LLO by the non-pathogenic species is sufficient to induce mortality in the insect model. We employed real-time bioluminescence imaging to examine the dynamics of listerial growth and virulence gene expression in the model. Analysis of promoter fusions demonstrated significant induction of virulence gene expression upon introduction of the pathogen into insects at both 30 and 37 °C. The host response to listerial infection was examined which demonstrated that haemocyte destruction accompanies pathogenesis and is preceded by activation of the phenoloxidase system. Furthermore, we demonstrate that is pathogenic to through a persistence mechanism that implicates an alternative mechanism for pathogenicity in this model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040782-0
2010-11-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3456.html?itemId=/content/journal/micro/10.1099/mic.0.040782-0&mimeType=html&fmt=ahah

References

  1. Akya A., Pointon A., Thomas C.. 2009a; Viability of Listeria monocytogenes in co-culture with Acanthamoeba spp. FEMS Microbiol Ecol70:20–29
    [Google Scholar]
  2. Akya A., Pointon A., Thomas C.. 2009b; Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitol Res105:1375–1383
    [Google Scholar]
  3. Aperis G., Fuchs B. B., Anderson C. A., Warner J. E., Calderwood S. B., Mylonakis E.. 2007; Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect9:729–734
    [Google Scholar]
  4. Bahey-El-Din M., Casey P. G., Griffin B. T., Gahan C. G.. 2008; Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. Vaccine26:5304–5314
    [Google Scholar]
  5. Bergin D., Murphy L., Keenan J., Clynes M., Kavanagh K.. 2006; Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect8:2105–2112
    [Google Scholar]
  6. Bidla G., Hauling T., Dushay M. S., Theopold U.. 2009; Activation of insect phenoloxidase after injury: endogenous versus foreign elicitors. J Innate Immun1:301–308
    [Google Scholar]
  7. Bron P. A., Monk I. R., Corr S. C., Hill C., Gahan C. G.. 2006; Novel luciferase reporter system for in vitro and organ-specific monitoring of differential gene expression in Listeria monocytogenes. Appl Environ Microbiol72:2876–2884
    [Google Scholar]
  8. Bubert A., Sokolovic Z., Chun S. K., Papatheodorou L., Simm A., Goebel W.. 1999; Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet261:323–336
    [Google Scholar]
  9. Buchrieser C., Rusniok C., Kunst F., Cossart P., Glaser P.. 2003; Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol Med Microbiol35:207–213
    [Google Scholar]
  10. Camejo A., Buchrieser C., Couve E., Carvalho F., Reis O., Ferreira P., Sousa S., Cossart P., Cabanes D.. 2009; In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog5:e1000449
    [Google Scholar]
  11. Chakraborty T., Leimeister-Wachter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S.. 1992; Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol174:568–574
    [Google Scholar]
  12. Chatterjee S. S., Hossain H., Otten S., Kuenne C., Kuchmina K., Machata S., Domann E., Chakraborty T., Hain T.. 2006; Intracellular gene expression profile of Listeria monocytogenes. Infect Immun74:1323–1338
    [Google Scholar]
  13. Cheng L. W., Portnoy D. A.. 2003; Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell Microbiol5:875–885
    [Google Scholar]
  14. Decatur A. L., Portnoy D. A.. 2000; A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science290:992–995
    [Google Scholar]
  15. Disson O., Grayo S., Huillet E., Nikitas G., Langa-Vives F., Dussurget O., Ragon M., Le Monnier A., Babinet C.. other authors 2008; Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature455:1114–1118
    [Google Scholar]
  16. Disson O., Nikitas G., Grayo S., Dussurget O., Cossart P., Lecuit M.. 2009; Modeling human listeriosis in natural and genetically engineered animals. Nat Protoc4:799–810
    [Google Scholar]
  17. Eleftherianos I., Marokhazi J., Millichap P. J., Hodgkinson A. J., Sriboonlert A., ffrench-Constant R. H., Reynolds S. E.. 2006; Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem Mol Biol36:517–525
    [Google Scholar]
  18. Ermolaeva S., Novella S., Vega Y., Ripio M. T., Scortti M., Vazquez-Boland J. A.. 2004; Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor. Mol Microbiol52:601–611
    [Google Scholar]
  19. Fedhila S., Buisson C., Dussurget O., Serror P., Glomski I. J., Liehl P., Lereclus D., Nielsen-LeRoux C.. 2010; Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol103:24–29
    [Google Scholar]
  20. Freitag N. E., Port G. C., Miner M. D.. 2009; Listeria monocytogenes – from saprophyte to intracellular pathogen. Nat Rev Microbiol7:623–628
    [Google Scholar]
  21. Garner M. R., Njaa B. L., Wiedmann M., Boor K. J.. 2006; Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun74:876–886
    [Google Scholar]
  22. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P.. other authors 2001; Comparative genomics of Listeria species. Science294:849–852
    [Google Scholar]
  23. Goetz M., Bubert A., Wang G., Chico-Calero I., Vazquez-Boland J. A., Beck M., Slaghuis J., Szalay A. A., Goebel W.. 2001; Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc Natl Acad Sci U S A98:12221–12226
    [Google Scholar]
  24. Greene S. L., Freitag N. E.. 2003; Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis. Microbiology149:111–120
    [Google Scholar]
  25. Hamon M., Bierne H., Cossart P.. 2006; Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol4:423–434
    [Google Scholar]
  26. Jander G., Rahme L. G., Ausubel F. M.. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol182:3843–3845
    [Google Scholar]
  27. Joseph B., Przybilla K., Stuhler C., Schauer K., Slaghuis J., Fuchs T. M., Goebel W.. 2006; Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol188:556–568
    [Google Scholar]
  28. Kanost M. R., Jiang H., Yu X. Q.. 2004; Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev198:97–105
    [Google Scholar]
  29. Karrer F. M., Reitz B. L., Hao L., Lafferty K. J.. 1992; Fluorescein labeling of murine hepatocytes for identification after intrahepatic transplantation. Transplant Proc24:2820–2821
    [Google Scholar]
  30. Kavanagh K., Reeves E. P.. 2004; Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev28:101–112
    [Google Scholar]
  31. Kurz C. L., Ewbank J. J.. 2007; Infection in a dish: high-throughput analyses of bacterial pathogenesis. Curr Opin Microbiol10:10–16
    [Google Scholar]
  32. Lecuit M.. 2007; Human listeriosis and animal models. Microbes Infect9:1216–1225
    [Google Scholar]
  33. Levraud J. P., Disson O., Kissa K., Bonne I., Cossart P., Herbomel P., Lecuit M.. 2009; Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun77:3651–3660
    [Google Scholar]
  34. Mansfield B. E., Dionne M. S., Schneider D. S., Freitag N. E.. 2003; Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol5:901–911
    [Google Scholar]
  35. McGann P., Ivanek R., Wiedmann M., Boor K. J.. 2007; Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the listeriae. Appl Environ Microbiol73:2806–2814
    [Google Scholar]
  36. Mukherjee K., Altincicek B., Hain T., Domann E., Vilcinskas A., Chakraborty T.. 2010; Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol76:310–317
    [Google Scholar]
  37. Mylonakis E., Moreno R., El Khoury J. B., Idnurm A., Heitman J., Calderwood S. B., Ausubel F. M., Diener A.. 2005; Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun73:3842–3850
    [Google Scholar]
  38. Nadon C. A., Bowen B. M., Wiedmann M., Boor K. J.. 2002; Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun70:3948–3952
    [Google Scholar]
  39. Peel M., Donachie W., Shaw A.. 1988; Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and Western blotting. J Gen Microbiol134:2171–2178
    [Google Scholar]
  40. Portnoy D. A., Jacks P. S., Hinrichs D. J.. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med167:1459–1471
    [Google Scholar]
  41. Riedel C. U., Monk I. R., Casey P. G., Morrissey D., O'Sullivan G. C., Tangney M., Hill C., Gahan C. G.. 2007; Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol73:3091–3094
    [Google Scholar]
  42. Riedel C. U., Monk I. R., Casey P. G., Waidmann M. S., Gahan C. G., Hill C.. 2009; AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol71:1177–1189
    [Google Scholar]
  43. Sheehan B., Klarsfeld A., Msadek T., Cossart P.. 1995; Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J Bacteriol177:6469–6476
    [Google Scholar]
  44. Sleator R. D., Watson D., Hill C., Gahan C. G.. 2009; The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology155:2463–2475
    [Google Scholar]
  45. Thomsen L. E., Slutz S. S., Tan M. W., Ingmer H.. 2006; Caenorhabditis elegans is a model host for Listeria monocytogenes. Appl Environ Microbiol72:1700–1701
    [Google Scholar]
  46. Wilson R. L., Tvinnereim A. R., Jones B. D., Harty J. T.. 2001; Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting. Infect Immun69:5016–5024
    [Google Scholar]
  47. Yano T., Mita S., Ohmori H., Oshima Y., Fujimoto Y., Ueda R., Takada H., Goldman W. E., Fukase K. V.. other authors 2008; Autophagic control of Listeria through intracellular innate immune recognition in Drosophila. Nat Immunol9:908–916
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040782-0
Loading
/content/journal/micro/10.1099/mic.0.040782-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error