1887

Abstract

Lipoarabinomannan (LAM) is a major glycolipid in the mycobacterial cell envelope. LAM consists of a mannosylphosphatidylinositol (MPI) anchor, a mannan core and a branched arabinan domain. The termini of the arabinan branches can become substituted with one to three (1→2)-linked mannosyl residues, the mannose cap, producing ManLAM. ManLAM has been associated with a range of different immunomodulatory properties of during infection of the host. In some of these effects, the presence of the mannose cap on ManLAM appears to be crucial for its activity. So far, in the biosynthesis of the mannose cap on ManLAM, two enzymes have been reported to be involved: a mannosyltransferase that adds the first mannosyl residue of the mannose caps to the arabinan domain of LAM, and another mannosyltransferase that elongates the mannose cap up to three mannosyl residues. Here, we report that a third gene is involved, , which is the orthologue of . encodes a predicted transmembrane acyltransferase. In Δ, the LAM arabinan domain is still intact, but the mutant LAM lacks the mannose cap. Additional effects of mutation of on LAM were observed: a higher degree of branching of both the arabinan domain and the mannan core, and a decreased incorporation of [1,2-C]acetate into the acyl chains in mutant LAM as compared with the wild-type form. This latter effect was also observed for related lipoglycans, i.e. lipomannan (LM) and phosphatidylinositol mannosides (PIMs). Furthermore, the mutant strain showed increased aggregation in liquid cultures as compared with the wild-type strain. All phenotypic traits of Δ, the deficiency in the mannose cap on LAM and changes at the cell surface, could be reversed by complementing the mutant strain with . Strikingly, membrane preparations of the mutant strain still showed enzymic activity for the arabinan mannose-capping mannosyltransferase similar to that of the wild-type strain. Although the exact function of MMAR_2380 remains unknown, we show that the protein is essential for the presence of a mannose cap on LAM.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037507-0
2010-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3492.html?itemId=/content/journal/micro/10.1099/mic.0.037507-0&mimeType=html&fmt=ahah

References

  1. Abdallah, A. M., Verboom, T., Hannes, F., Safi, M., Strong, M., Eisenberg, D., Musters, R. J., Vandenbroucke-Grauls, C. M., Appelmelk, B. J. & other authors ( 2006; ). A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62, 667–679.[CrossRef]
    [Google Scholar]
  2. Appelmelk, B. J., den Dunnen, J., Driessen, N. N., Ummels, R., Pak, M., Nigou, J., Larrouy-Maumus, G., Gurcha, S. S., Movahedzadeh, F. & other authors ( 2008; ). The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium–host interaction. Cell Microbiol 10, 930–944.[CrossRef]
    [Google Scholar]
  3. Banaei, N., Kincaid, E. Z., Lin, S. Y., Desmond, E., Jacobs, W. R., Jr & Ernst, J. D. ( 2009; ). Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green. Antimicrob Agents Chemother 53, 3799–3802.[CrossRef]
    [Google Scholar]
  4. Belisle, J. T. & Brennan, P. J. ( 1989; ). Chemical basis of rough and smooth variation in mycobacteria. J Bacteriol 171, 3465–3470.
    [Google Scholar]
  5. Belisle, J. T., Klaczkiewicz, K., Brennan, P. J., Jacobs, W. R. & Inamine, J. M. ( 1993; ). Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J Biol Chem 268, 10517–10523.
    [Google Scholar]
  6. Besra, G. S. ( 1998; ). Preparation of cell-wall fractions from mycobacteria. In Methods in Molecular Biology: Mycobacteria Protocols, vol. 101, pp. 91–107. Edited by Parish, T. & Stoker, N. G.. Totowa, NJ. : Humana Press.[CrossRef]
    [Google Scholar]
  7. Besra, G. S., Morehouse, C. B., Rittner, C. M., Waechter, C. J. & Brennan, P. J. ( 1997; ). Biosynthesis of mycobacterial lipoarabinomannan. J Biol Chem 272, 18460–18466.[CrossRef]
    [Google Scholar]
  8. Briken, V., Porcelli, S. A., Besra, G. S. & Kremer, L. ( 2004; ). Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53, 391–403.[CrossRef]
    [Google Scholar]
  9. Burguière, A., Hitchen, P. G., Dover, L. G., Kremer, L., Ridell, M., Alexander, D. C., Liu, J., Morris, H. R., Minnikin, D. E. & other authors ( 2005; ). LosA, a key glycosyltransferase involved in the biosynthesis of a novel family of glycosylated acyltrehalose lipooligosaccharides from Mycobacterium marinum. J Biol Chem 280, 42124–42133.[CrossRef]
    [Google Scholar]
  10. Chatterjee, D. & Khoo, K. H. ( 1998; ). Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8, 113–120.[CrossRef]
    [Google Scholar]
  11. Ciucanu, I. & Kerek, F. ( 1984; ). A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131, 209–217.[CrossRef]
    [Google Scholar]
  12. Crellin, P. K., Kovacevic, S., Martin, K. L., Brammananth, R., Morita, Y. S., Billman-Jacobe, H., McConville, M. J. & Coppel, R. L. ( 2008; ). Mutations in pimE restore lipoarabinomannan synthesis and growth in a Mycobacterium smegmatis lpqW mutant. J Bacteriol 190, 3690–3699.[CrossRef]
    [Google Scholar]
  13. Daffé, M., Mcneil, M. & Brennan, P. J. ( 1991; ). Novel type-specific lipooligosaccharides from Mycobacterium tuberculosis. Biochemistry 30, 378–388.[CrossRef]
    [Google Scholar]
  14. Dinadayala, P., Kaur, D., Berg, S., Amin, A. G., Vissa, V. D., Chatterjee, D., Brennan, P. J. & Crick, D. C. ( 2006; ). Genetic basis for the synthesis of the immunomodulatory mannose caps of lipoarabinomannan in Mycobacterium tuberculosis. J Biol Chem 281, 20027–20035.[CrossRef]
    [Google Scholar]
  15. Dobson, G., Minnikin, D. E., Minnikin, S. M., Parlett, J. H., Goodfellow, M., Ridell, M. & Magnusson, M. ( 1985; ). Systematic analysis of complex mycobacterial lipids. In Chemical Methods in Bacterial Systematics, vol. 1, pp. 237–265. Edited by Goodfellow, M. & Minnikin, D. E.. London. : Academic Press.
    [Google Scholar]
  16. Fukuda, A., Matsuyama, S., Hara, T., Nakayama, J., Nagasawa, H. & Tokuda, H. ( 2002; ). Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals. J Biol Chem 277, 43512–43518.[CrossRef]
    [Google Scholar]
  17. Gadikota, R. R., Callam, C. S., Appelmelk, B. J. & Lowary, T. L. ( 2003; ). Synthesis of oligosaccharide fragments of mannosylated lipoarabinomannan appropriately functionalized for neoglycoconjugate preparation. J Carbohydr Chem 22, 149–170.[CrossRef]
    [Google Scholar]
  18. Geijtenbeek, T. B., van Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M., Appelmelk, B. & Van Kooyk, Y. ( 2003; ). Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197, 7–17.
    [Google Scholar]
  19. Gilleron, M., Bala, L., Brando, T., Vercellone, A. & Puzo, G. ( 2000; ). Mycobacterium tuberculosis H37Rv parietal and cellular lipoarabinomannans. Characterization of the acyl- and glyco-forms. J Biol Chem 275, 677–684.[CrossRef]
    [Google Scholar]
  20. Gilleron, M., Lindner, B. & Puzo, G. ( 2006; ). MS/MS approach for characterization of the fatty acid distribution on mycobacterial phosphatidyl-myo-inositol mannosides. Anal Chem 78, 8543–8548.[CrossRef]
    [Google Scholar]
  21. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. ( 2008; ). Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105, 3963–3967.[CrossRef]
    [Google Scholar]
  22. Howard, S. T., Rhoades, E., Recht, J., Pang, X. H., Alsup, A., Kolter, R., Lyons, C. R. & Byrd, T. F. ( 2006; ). Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 152, 1581–1590.[CrossRef]
    [Google Scholar]
  23. Jackson, M., Crick, D. C. & Brennan, P. J. ( 2000; ). Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 275, 30092–30099.[CrossRef]
    [Google Scholar]
  24. Kang, P. B., Azad, A. K., Torrelles, J. B., Kaufman, T. M., Beharka, A., Tibesar, E., DesJardin, L. E. & Schlesinger, L. S. ( 2005; ). The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202, 987–999.[CrossRef]
    [Google Scholar]
  25. Kaur, D., Berg, S., Dinadayala, P., Gicquel, B., Chatterjee, D., McNeil, M. R., Vissa, V. D., Crick, D. C., Jackson, M. & other authors ( 2006; ). Biosynthesis of mycobacterial lipoarabinomannan: role of a branching mannosyltransferase. Proc Natl Acad Sci U S A 103, 13664–13669.[CrossRef]
    [Google Scholar]
  26. Kaur, D., Obregon-Henao, A., Pham, H., Chatterjee, D., Brennan, P. J. & Jackson, M. ( 2008; ). Lipoarabinomannan of Mycobacterium: mannose capping by a multifunctional terminal mannosyltransferase. Proc Natl Acad Sci U S A 105, 17973–17977.[CrossRef]
    [Google Scholar]
  27. King, J. D., Kocincova, D., Westman, E. L. & Lam, J. S. ( 2009; ). Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 15, 261–312.[CrossRef]
    [Google Scholar]
  28. Kolk, A. H., Ho, M. L., Klatser, P. R., Eggelte, T. A., Kuijper, S., de Jonge, S. & van Leeuwen, J. ( 1984; ). Production and characterization of monoclonal antibodies to Mycobacterium tuberculosis, M. bovis (BCG) and M. leprae. Clin Exp Immunol 58, 511–521.
    [Google Scholar]
  29. Korduláková, J., Gilleron, M., Puzo, G., Brennan, P. J., Gicquel, B., Mikusova, K. & Jackson, M. ( 2003; ). Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of Mycobacterium species. J Biol Chem 278, 36285–36295.[CrossRef]
    [Google Scholar]
  30. Kovacevic, S., Anderson, D., Morita, Y. S., Patterson, J., Haites, R., McMillan, B. N., Coppel, R., McConville, M. J. & Billman-Jacobe, H. ( 2006; ). Identification of a novel protein with a role in lipoarabinomannan biosynthesis in mycobacteria. J Biol Chem 281, 9011–9017.[CrossRef]
    [Google Scholar]
  31. Lamichhane, G., Tyagi, S. & Bishai, W. R. ( 2005; ). Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect Immun 73, 2533–2540.[CrossRef]
    [Google Scholar]
  32. Lee, R. E., Brennan, P. J. & Besra, G. S. ( 1998; ). Synthesis of β-d-arabinofuranosyl-1-monophosphoryl polyprenols: examination of their function as mycobacterial arabinosyl transferase donors. Bioorg Med Chem Lett 8, 951–954.[CrossRef]
    [Google Scholar]
  33. Ludwiczak, P., Brando, T., Monsarrat, B. & Puzo, G. ( 2001; ). Structural characterization of Mycobacterium tuberculosis lipoarabinomannans by the combination of capillary electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 73, 2323–2330.[CrossRef]
    [Google Scholar]
  34. Maeda, N., Nigou, J., Herrmann, J. L., Jackson, M., Amara, A., Lagrange, P. H., Puzo, G., Gicquel, B. & Neyrolles, O. ( 2003; ). The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 278, 5513–5516.[CrossRef]
    [Google Scholar]
  35. Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R. & other authors ( 2009; ). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37, D205–D210.[CrossRef]
    [Google Scholar]
  36. Mishra, A. K., Alderwick, L. J., Rittmann, D., Wang, C., Bhatt, A., Jacobs, W. R., Jr, Takayama, K., Eggeling, L. & Besra, G. S. ( 2008; ). Identification of a novel α(1→6) mannopyranosyltransferase MptB from Corynebacterium glutamicum by deletion of a conserved gene, NCgl1505, affords a lipomannan- and lipoarabinomannan-deficient mutant. Mol Microbiol 68, 1595–1613.[CrossRef]
    [Google Scholar]
  37. Morita, Y. S., Velasquez, R., Taig, E., Waller, R. F., Patterson, J. H., Tull, D., Williams, S. J., Billman-Jacobe, H. & McConville, M. J. ( 2005; ). Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 280, 21645–21652.[CrossRef]
    [Google Scholar]
  38. Nigou, J., Vercellone, A. & Puzo, G. ( 2000; ). New structural insights into the molecular deciphering of mycobacterial lipoglycan binding to C-type lectins: lipoarabinomannan glycoform characterization and quantification by capillary electrophoresis at the subnanomole level. J Mol Biol 299, 1353–1362.[CrossRef]
    [Google Scholar]
  39. Nigou, J., Gilleron, M., Rojas, M., Garcia, L. F., Thurnher, M. & Puzo, G. ( 2002; ). Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect 4, 945–953.[CrossRef]
    [Google Scholar]
  40. Nigou, J., Gilleron, M. & Puzo, G. ( 2003; ). Lipoarabinomannans: from structure to biosynthesis. Biochimie 85, 153–166.[CrossRef]
    [Google Scholar]
  41. Pitarque, S., Herrmann, J. L., Duteyrat, J. L., Jackson, M., Stewart, G. R., Lecointe, F., Payre, B., Schwartz, O., Young, D. B. & other authors ( 2005; ). Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity. Biochem J 392, 615–624.[CrossRef]
    [Google Scholar]
  42. Pitarque, S., Larrouy-Maumus, G., Payre, B., Jackson, M., Puzo, G. & Nigou, J. ( 2008; ). The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb) 88, 560–565.[CrossRef]
    [Google Scholar]
  43. Puttinaowarat, S., Thompson, K., Lilley, J. & Adams, A. ( 1999; ). Characterization of Mycobacterium spp. isolated from fish by pyrolysis mass spectrometry (PyMS) analysis. AAHRI Newslett 8, 4–8.
    [Google Scholar]
  44. Rubin, E. J., Akerley, B. J., Novik, V. N., Lampe, D. J., Husson, R. N. & Mekalanos, J. J. ( 1999; ). In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96, 1645–1650.[CrossRef]
    [Google Scholar]
  45. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. ( 2001; ). Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98, 12712–12717.[CrossRef]
    [Google Scholar]
  46. Schlesinger, L. S., Hull, S. R. & Kaufman, T. M. ( 1994; ). Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152, 4070–4079.
    [Google Scholar]
  47. Sonnhammer, E. L., Heijne, G. & Krogh, A. ( 1998;). A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, pp. 175–182. Edited by J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff & C. Sensen. Menlo Park, CA: AAAI Press.
  48. Tschumi, A., Nai, C., Auchli, Y., Hunziker, P., Gehrig, P., Keller, P., Grau, T. & Sander, P. ( 2009; ). Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem 284, 27146–27156.[CrossRef]
    [Google Scholar]
  49. Welin, A., Winberg, M. E., Abdalla, H., Sarndahl, E., Rasmusson, B., Stendahl, O. & Lerm, M. ( 2008; ). Incorporation of Mycobacterium tuberculosis lipoarabinomannan into macrophage membrane rafts is a prerequisite for the phagosomal maturation block. Infect Immun 76, 2882–2887.[CrossRef]
    [Google Scholar]
  50. Yamazaki, Y., Danelishvili, L., Wu, M., Hidaka, E., Katsuyama, T., Stang, B., Petrofsky, M., Bildfell, R. & Bermudez, L. E. ( 2006a; ). The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol 8, 806–814.[CrossRef]
    [Google Scholar]
  51. Yamazaki, Y., Danelishvili, L., Wu, M., Macnab, M. & Bermudez, L. E. ( 2006b; ). Mycobacterium avium genes associated with the ability to form a biofilm. Appl Environ Microbiol 72, 819–825.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037507-0
Loading
/content/journal/micro/10.1099/mic.0.037507-0
Loading

Data & Media loading...

Supplements

Adobe PDF - mic037507_suppl_fig_legends.pdf 

PDF

Adobe PDF - mic037507_supplementary_figs.pdf 

PDF

Adobe PDF - mic037507_Table_S1.pdf 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error