-
Volume 142,
Issue 5,
1996
Volume 142, Issue 5, 1996
- Review Article
-
- Antigens And Immunity
-
-
-
Dynamic expression of cell-surface antigens probed with Candida albicans-specific monoclonal antibodies
More LessIgG hybridomas were produced which preferentially reacted with cell-surface antigens of either yeast cells or hyphae of Candida albicans. Four mAbs were used in an immunostaining procedure to follow the expression dynamics of these antigens in media supplemented with glucose or galactose. Yeast cell growth was analysed during the lag phase, the early- and late-exponential phases and the stationary phase, and mycelium formation was analysed between 0.5 and 24 h induction at 37 0C. It appears that yeast cell-surface antigens 5C11 and 2E11 are expressed throughout all phases of yeast cell growth as well as on young hyphae after up to 1 h induction. Longer hyphae only faintly react with these two mAbs as they switch to hyphal cell-surface antigens 2G8 and 4E1 after 3 h induction. The reactivity to mAbs 2G8 and 4E1 was induced after a 3 h temperature shift and was confined to the terminal third of growing mycelia. Growth and hyphae induction in galactose prolonged the reactivity of young hyphae with the two anti-yeast-cell mAbs, whereas the expression of surface antigens 2G8 and 2E11 appeared delayed and desynchronized on hyphae. Whereas a similar reactivity was found with ten ATCC strains of C. albicans, four clinical isolates had a unique pattern of reactivity. Immunoblot analyses of DTT extracts of cell-surface constituents indicated that the antigens were proteinaceous in nature and showed that yeast-cell antigens 5C11 and 2E11 are detected in four bands between 68 and 104 kDa, whereas mycelial antigens 4E1 and 2G8 are detected in 117 kDa and 104 kDa bands found in mycelial but not in yeast-cell extracts. Present data support the concept of a dynamic balance in the expression of phase-specific antigens in C. albicans.
-
-
- Biochemistry
-
-
-
Ether-bond scission in the biodegradation of alcohol ethoxylate nonionic surfactants by Pseudomonas sp. strain SC25A
More LessPseudomonas sp. strain SC25A, previously isolated for its ability to grow on alcohol ethoxylates (PEG dodecyl ethers) as sole source of carbon and energy, was shown to be capable of growth on the dodecyl ethers of mono-, di, tri- and octaethylene glycols. Comparative growth yields for this series of alcohol ethoxylate nonionic surfactants indicated that, whereas all of the carbon of monoethylene glycol dodecyl ether (MEGDE) was assimilable, only the alkyl chains were assimilated from the higher ethoxamers. These results are interpreted in terms of a primary biodegradation mechanism in which the scission of the dodecyl-ether bond is the first step. In the case of MEGDE this step separates the dodecyl chain from a C2 fragment, both of which are readily assimilable; for the higher ethoxamers, the assimilable dodecyl chain is accompanied by an ether-containing PEG derivative which would require further rounds of ether scission before assimilation. Whole cells and cell extracts converted [1-14C]MEGDE initially and very rapidly to radiolabelled dodecanol. Disappearance of [14C]dodecanol was accompanied by production of [14C]dodecanal. [14C]Dodecanoic acid was present at relatively low concentrations throughout the incubation periods. [14C]Dodecan-1, 12-dioic acid was produced in significant quantities (up to 25% of radiolabel), and the onset of its production coincided with the peak concentration of dodecanal, the disappearance of which mirrored the appearance of the dioic acid. Under anaerobic conditions in the presence of cell extracts, dodecanol (55% of radiolabel) and dodecanal (22%) accumulated rapidly from MEGDE, but there was little subsequent conversion to mono- or dicarboxylic acids. These results are interpreted in terms of a pathway initiated by dodecyl-ether cleavage to produce dodecanol, which is subsequently oxidized to dodecanal and dodecanoic acid. The formation of dodecan-1, 12-dioic acid, probably from dodecanal, may represent a means of harbouring carbon under non-growing conditions.
-
-
-
-
Actin-related proteins in Anabaena spp. and Escherichia coli
Actin has been described in all eukaryotic cells as the major microfilament cytoskeletal protein. Although prokaryotic cells do not have a cytoskeleton, proteins related to the latter have been found in different prokaryotic species. We have found prokaryotic actin-related proteins in the enterobacterium Escherichia coli and in the cyanobacteria Anabaena cylindrica and Anabaena variabilis. They were identified by the following criteria: (1) by cross-reaction with a fluorescent conjugated anti-actin (rat-brain) mAb by Western blot analysis (in total cellular extracts); (2) specific binding of acetone powder and soluble cellular extracts to DNase 1; and (3) specific binding of cells and total cellular extracts to phalloidin. In E. coli, specific binding of phalloidin labelled with rhodamine to cells was detected by spectrofluorometry. In total cellular extracts, three bands of 60, 43 and 35 kDa were weakly recognized by the mAb by Western blot analysis; this recognition increased when phalloidin was added to the extracts. Furthermore, three polypeptides of 60 kDa were isolated by binding to DNase I, showing pl values of 6.7, 6.65 and 6.6, less acidic than all reported actin pl values. In A. cylindrica and A. variabilis, specific binding of phalloidin labelled with rhodamine to cells was also detected by spectrofluorometry. In total and soluble cellular extracts, the mAb recognized two bands of 45 and 40 kDa by Western blot analysis, but only the first was purified by binding to DNase I, and it showed three isoforms of pl values 6.8, 6.5 and 6.4. These results suggest the presence, in prokaryotes, of proteins with similar biochemical characteristics to eukaryotic actin.
-
- Bioenergetics And Transport
-
-
-
Reactions of the Escherichia coli flavohaemoglobin (Hmp) with NADH and near-micromolar oxygen: oxygen affinity of NADH oxidase activity
More LessThe soluble flavohaemoglobin (Hmp) of Escherichia coli, product of the hmp gene, contains haem B and FAD in a single polypeptide of molecular mass 44 kDa. The function of this protein (and of the similar proteins identified in several bacteria and yeast) is unknown, but the observation that the binding of oxygen to haem modulates the reduction level of FAD has suggested that Hmp could act as an oxygen sensor. Here, stopped-flow, rapid-scan spectroscopy has shown that the oxidized protein reacts rapidly with NADH to form an oxygenated species, even when efforts are made to reduce oxygen concentrations to sub-micromolar levels, suggesting a high affinity for this ligand. As is the case at high oxygen concentrations (130 μM), oxygenated species formation was kinetically and spectrally heterogeneous. Between 12 ms and 1 s after mixing, following transient formation of the deoxy form and its reaction with dioxygen, a steady-state level of the oxygenated species was attained. During the oxygenated steady state, the flavin remained largely oxidized, as observed previously at 130 μM oxygen. Hmp is an NADH oxidase; on exhaustion of oxygen by reduction (in < 10 s under these conditions), the oxygenated species disappeared to generate the deoxy Fe(II) haem, whereupon the flavin was reduced. The affinity for oxygen during NADH oxidation was measured by continuous dual-wavelength monitoring of the deoxygenation of oxymyoglobin. The K m for oxygen was 2.6 μM, much higher than the K m values determined, using the same method, for the membrane-bound terminal oxidases cytochromes bo’ and bd. These results show that the oxidase activity of Hmp, but not necessarily oxygen binding, would be minimal at oxygen concentrations that limit terminal oxidase function.
-
-
-
-
Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose
More LessThe metabolism of Clostridium butyricum DSM 5431 was studied in chemostat culture under carbon limitation using either glucose or glycerol. On glycerol, the enzymes glycerol dehydrogenase, diol dehydratase and 1,3-propanediol (1,3-PD) dehydrogenase constitute the branch point that partitions the carbon flux between the competing pathways, i.e. formation of either 1,3-PD or acetate and butyrate. The increasing levels of these enzyme activities with increasing dilution rates (D) explained the constant proportion of glycerol conversion into 1,3-PD. The production of acetate or butyrate constitutes another important branch point and when D increased (i) large amounts of intracellular acetyl-CoA accumulated, (ii) the carbon flux switched from butyric acid to acetic acid, (iii) the specific activity of thiolase was not affected, suggesting this enzyme may be the bottleneck for carbon flux to butyrate biosynthesis providing an explanation for the accumulation of large amounts of intracellular acetyl-CoA, and (iv) high levels of NADH were found in the cell. Oxidation of NADH by 1,3-PD dehydrogenase was linked to the production of 3-hydroxypropionaldehyde (3-HPA) by glycerol dehydratase. The fact that high intracellular concentrations of NADH were found means that diol dehydratase activity is the rate-limiting step in 1,3-PD formation, avoiding the accumulation of 3-HPA which is a very toxic compound. The specific rate of glucose catabolism (q glucose = 11.1 mmol h-1 g-1) was around four times lower than the specific rate of glycerol catabolism (q glucose = 57.4 mmol h-1 g-1). On glucose-grown cells, reducing equivalents which are released in the glycolytic pathway were reoxidized by the butyric pathway and the low specific formation rate of butyric acid led to an increase in the intracellular level of acetyl-CoA and NADH. Carbon flow was higher on glycerol due to the reoxidation of NADH by both butyric and PD pathways.
-
-
-
Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae: specificity and kinetics
More LessThe existence of multiple transport systems for Mn2+ in Saccharomyces cerevisiae has been demonstrated in this study. Mn2+ (supplied as MnCI2) was accumulated by S. cerevisiae at all Mn2+ concentrations examined (25 nM-1 mM) but a log-log plot of uptake rates and total amounts accumulated revealed the existence of at least two Mn2+ concentration-dependent transport systems. Over a low Mn2+ concentration range (25-1000 nM), high-affinity Mn2+ uptake occurred with a K m value of 0.3 μM, while transformation of kinetic data obtained over the concentration range 5-200 μM revealed another system with a K m of 62 μM. Meaningful kinetic analyses were not possible at higher Mn2+ concentrations because of toxicity: only about 30% of cells remained viable after 30 min incubation with 1000 μM MnCI2. Release of K+ accompanied Mn2+ accumulation and this increased with increasing Mn2+ concentration. However, even in non-toxic Mn2+ concentrations, the ratio of Mn2+ uptake to K+ release greatly exceeded electroneutral stoichiometric exchange. In 50 μM MnCI2, the ratio was 1: 123 and this increased to 1:2670 in 1000 μM MnCI2, a toxic concentration. External Mg2+ was found to decrease Mn2+ accumulation at all concentrations examined, but to differing extents. Over the low Mn2+ concentration range (5-200 μM), Mg2+ competitively inhibited Mn2+ uptake with a half-maximal inhibitory concentration, K i, of 5.5 μM Mg2+. However, even in the presence of a 50-fold excess of Mg2+, inhibition of Mn2+ uptake was of the order of 72% and it appears that the cellular requirement for Mn2+ could be maintained even in the presence of such a large excess of Mg2+. Over the high Mn2+ concentration range (5-200 μM), the K i for Mg2+ was 25.2 μM. At low Mn2+ concentrations, Zn2+ and Co2+, but not Cd2+, inhibited Mn2+ uptake, which indicated that the high-affinity Mn2+ uptake system was of low specificity, while at higher Mn2+ concentrations, where the lower-affinity Mn2+ transport system operated, inhibition was less marked. However, competition studies with potentially toxic metal cations were complicated due to toxic effects, particularly noticeable at 50 μM Co2+ and Cd2+.
-
- Biotechnology
-
-
-
Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate
More LessThe polyhydroxybutyrate (PHB) synthase gene of the bacterium Alcaligenes eutrophus was used to construct a yeast plasmid which enabled expression of the functional synthase enzyme in Saccharomyces cerevisiae. Cells transformed with the synthase plasmid accumulated up to 0.5% of cell dry weight as PHB, with accumulation occurring in the stationary phase of batch growth. The identity of PHB in recombinant yeast cells was confirmed with 1HNMR spectra of chloroform-extracted cell material. In addition, freeze-fracture electron microscopy revealed cytoplasmic granules exhibiting plastic deformations characteristic for PHB. GC results indicated a low background level of PHB in the wild-type strain, but intact polymer could not be detected by 1H-NMR. Formation of PHB in the recombinant strain implies the participation of native yeast enzymes in the synthesis of D-3-hydroxybutyryl-CoA (3-HB-CoA). Inhibition studies with cerulenin indicated that the fatty acid synthesis pathway is not involved in PHB precursor formation. Wild-type cell-free extracts showed D-3-HB-CoA dehydrogenase activity [150-200 nmol min-1 (mg protein)-1] and acetoacetyl-CoA thiolase activity [10-20 nmol min-1 (mg protein)-1], which together could synthesize monomer from acetyl-CoA. PHB accumulation was simultaneous with ethanol production, suggesting that PHB can act as an alternate electron sink in fermentative metabolism. We propose that PHB synthesis in recombinant yeast is catalysed by native cytoplasmic acetoacetyl-CoA thiolase, a native β-oxidation protein possessing D-3-HB-CoA dehydrogenase activity and heterologous PHB synthase.
-
-
- Environmental Microbiology
-
-
-
Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment
More LessWe designed a panel of four 16S rRNA-targeted oligonucleotide probes specific for bacteria of the phylum cytophaga-flavobacter-bacteroides (CFB). Probes CF319a and CF319b are targeted to members of the flavobacteria-cytophaga group and the genus Porphyromonas, whereas probe BAC303 has a target region characteristic for the genera Prevotella and Bacteroides within the bacteroides group. The probe FFE8b was developed for species-specific hybridizations with Flavobacterium ferrugineum. All probes were designed by computer-assisted sequence analysis and compared to all currently accessible 16S and 23S rRNA sequences. The oligonucleotides were further evaluated by whole-cell and non-radioactive dot-blot hybridization against reference strains of the CFB phylum and other major lineages of Bacteria. The newly developed probes were used together with other higher-order probes to analyse the structure and community composition in complex environments. In activated sludge samples, members of the flavobacteria-cytophaga group were revealed by in situ hybridization as important constituents of sludge flocs and characteristic colonizers of filamentous bacteria. By application of fluorescent probe BAC303, members of the genera Bacteroides and Prevotella could be visualized without prior cultivation as an important part of the human faecal microflora.
-
-
-
-
The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species
More LessOur understanding of microbial diversity is greatly hampered by the inability to culture as much as 99% of the microbial community in the biosphere. Development of methods for identification and determining microbial phylogenies based on gene sequences, and for recovering genes directly from diverse environmental samples has made it possible to study microbes without the need for cultivation. PCR techniques have revolutionized retrieval of conserved gene sequences. However, it is well known that co-amplification of homologous genes may generate chimeric sequences leading to descriptions of non-existent species. To quantify the frequency of chimeric sequences in PCR amplification of 16S rRNA genes, we chose several 16S rDNAs with known sequences and mixed them for PCR amplifications under various conditions. Using this model system, we detected 30% occurrence of chimeric sequences after 30 cycles of co-amplification of two nearly identical 16S rRNA genes. The frequency of chimera formation decreased to 12.9% and 14.7% for templates with 82% and 86% similarity, respectively. We also examined effects of the number of amplification cycles, length of elongation periods and presence of damaged DNA on chimera formation. The results should provide useful information for microbiologists who use PCR-based strategies to retrieve conserved genes from mixed genomes.
-
-
-
Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria
More LessThree 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial isolates were obtained from the highly saline and alkaline Alkali Lake site in southwestern Oregon contaminated with 2,4-D production wastes. While similar in most respects, the three isolates differed significantly in 2,4-D degradation rates, with the most active strain, 1-18, demonstrating an ability to degrade up to 3000 mg 2,4-D I-1 in 3 d. This strain was well adapted to the extreme environment from which it was isolated, growing optimally on 2,4-D at pH 8.4-9.4 and at sodium ion concentrations of 0.6-1.0 M. According to its optimum salt concentration and pH for growth, this isolate was a moderately halophilic, alkaliphilic bacterium. The 16S RNA gene sequence (303 nt) was identical for all three isolates and most closely resembled those of the moderately halophilic eubacteria of the family Halomonadaceae (91% identity). Biochemical and genetic examination revealed strain 1-18 utilizes the same 2,4-D degradation pathway as most of the 2,4-D-degrading bacteria from non-extreme environments. Hybridization data and comparison of the partial sequences of the tfdA gene from the Alkali Lake isolates with those of bacteria from non-extreme environments suggested a common genetic origin of the 2,4-D degradation pathway in the two groups of micro-organisms.
-
- Genetics And Molecular Biology
-
-
-
Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO
Conjugational mobilization of a Pseudomonas aeruginosa PAO1 cosmid bank (in pMMB33) into a pyoverdine-deficient (pvd) mutant harbouring a mutation in the 47 min region of the chromosome yielded one clone which restored yellow-green pigmentation and fluorescence when grown on iron-deficient medium. The relevant pMMB33-derivative cosmid, pPYP17, contained a 15.1 kb insert which was subcloned into pKT240 as a 10.8 kb Sacl-Clal fragment conferring the same phenotype. This derivative, pPYP180, like pPYP17, also conferred an apparent wild-type phenotype on pvd mutants previously shown to map genetically in the 23 min region of the P. aeruginosa PAO chromosome. Physical mapping indicated that the cloned DNA fragment is located at the 66-70 min region of the PAO chromosome, demonstrating that the restored apparent wild-type phenotype observed for the transconjugants was not the result of a true gene complementation. A gene interruption was obtained by replacing a 0.6 kb Bglll-Bglll region of pPYP180 necessary for the expression of the pigmentation/fluorescence phenotype, by a Hgr interposon (ΩHg). After conjugational transfer and introduction of the mutagenized fragment into the PAO1 chromosome by gene replacement, pyoverdine-deficient mutants were recovered, indicating that the fragment indeed contained at least one gene involved in pyoverdine synthesis. The yellow-green fluorescent compound produced by such cells harbouring plasmids pPYP17 or pPYP180 differed from pyoverdine in several aspects and was consequently named pseudoverdine. Although pseudoverdine was able to complex iron, it was unable to restore growth to pvd mutants in the presence of the iron chelator ethylenediamine di(o-hydroxyphenylacetic acid), or to mediate iron uptake into PAO1. Pseudoverdine lacked a peptide chain but possessed spectral properties similar to pyoverdine, suggesting that it was structurally related to the chromophore of the pyoverdine molecule. The recent structural determination of pseudoverdine as a coumarin derivative confirmed this view and sheds some light on the biosynthetic pathway of the pyoverdine chromophore.
-
-
-
-
Disruption of a glycogen-branching enzyme gene, glgB, specifically affects the sporulation-associated phase of glycogen accumulation in Streptomyces aureofaciens
More LessIn the course of Streptomyces differentiation, glycogen is accumulated in two discrete phases: in substrate hyphae that undergo aerial mycelium formation (phase I), and during septation of aerial hyphae (phase II). We have disrupted a previously identified gene, glgB, encoding a putative glycogen-branching enzyme in Streptomyces aureofaciens. Disruption of the gene had no profound effect on sporulation. However, the amount of glycogen-like polysaccharides, compared to wild-type (WT) S. aureofaciens, decreased in the late stage of differentiation of the glgB-disrupted strain. Absorption spectra of polysaccharides extracted from the WT and glgB-disrupted strains have shown the presence of glycogen in both strains in the first stage of differentiation (aerial mycelium formation), and unbranched glucan was detected in the glgB-disrupted strain in the late stage of differentiation. The results were confirmed by electron microscopy after silver proteinate staining of glycogen granules. Two distinct glycogen-branching enzymes, which had temporally different expression during differentiation, were detected in WT S. aureofaciens. The absence of this enzyme activity in the late stage of differentiation in the glgB mutant suggests that the product of the glgB gene is responsible for phase II glycogen accumulation.
-
-
-
Transcription of the glnB and glnA genes in the photosynthetic bacterium Rhodospirillum rubrum
More LessThe P11 protein, encoded by glnB, has a central role in the control of nitrogen metabolism in nitrogen-fixing prokaryotes. The glnB gene of Rhodospirillum rubrum was isolated and sequenced. The deduced amino acid sequence had very high sequence identity to other P11 proteins. The glnA gene, encoding glutamine synthetase, was located 135 bp downstream of glnB and was partially sequenced. glnB is cotranscribed with glnA from a promoter with high similarity to the s54-dependent promoter consensus sequence. A putative s70 promoter was also identified further upstream of glnB. Northern blotting analyses showed that in addition glnA is either transcribed from an unidentified promoter or, more likely, that the glnBA transcript is processed to give the glnA mRNA. The total level of the two transcripts was much higher in nitrogen-fixing cells than in ammonia-grown cells.
-
-
-
Efficient transformation of Lactobacillus sake by electroporation
A procedure to transform intact Lactobacillus sake cells by electroporation was developed through a systematic examination of the effect of changes in various parameters on the transformation efficiency of Lact. sake strain 64F. The most critical factors were found to be the electrical parameters, the composition of washing and electroporation/storage solutions, and the presence of MgCI2 in the expression medium. Under optimal conditions transformation efficiencies up to 107 transformants (μg supercoiled DNA)-1 were obtained. The optimized procedure was successfully applied to other Lact. sake strains and consistently yielded from 104 to 107 transformants (μg supercoiled DNA)-1.
-
-
-
Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactoccocus lactis N8
More LessNisin is a small post-translationally modified lanthionine-containing peptide (lantibiotic) produced by certain Lactococcus lactis strains which has a high antimicrobial activity against several pathogenic Gram-positive bacteria. Northern blots and RT/PCR analyses of the nisin-producing strain N8 revealed that the nisZBTCIPRKFEG gene cluster, responsible for nisin biosynthesis, immunity and regulation, consists of two operons, nisZBTCIPRK and nisFEG. The promoter of the nisFEG operon was mapped. The −35 to −1 region upstream of the transcription start of the nisFEG promoter showed 73% identity with the corresponding region upstream of the nisA and nisZ gene. In contrast to earlier reports, nisin was found to be secreted during the early stages of growth as well as later in the growth cycle. The secreted nisin was adsorbed on the surface of the cells and was released to the medium during mid-exponential growth, when the pH in the medium fell below 5.5. In nisZB antisense and nisT deletion mutant strains constructed in this study the transcription of the nisin operons, nisin production and immunity were lost. Provision of external nisin restored the transcription of both operons in the mutant strains, showing that the operons are coordinately regulated by mature nisin. Nisin induction of the mutant strains also resulted in an increased amount of the Nisl protein and an increase in the level of immunity. Induction using higher concentrations of nisin yielded a higher level of immunity. These results showed that the nisin promoters are under positive control in an autoregulatory manner and that antimicrobial peptides can also function as signal molecules.
-
-
-
Regulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions
More LessMethane is oxidized to methanol by the enzyme methane mono-oxygenase (MMO) in methanotrophic bacteria. In previous work, this multicomponent enzyme system has been extensively characterized at the biochemical and molecular level. Copper ions have been shown to irreversibly inhibit MMO activity in vivo and in vitro, but the effect of copper ions on transcription of the genes encoding the soluble (cytoplasmic) MMO (sMMO) has not previously been investigated. To examine more closely the regulation of bacterial methane oxidation and to determine the role of copper in this process, we have investigated transcriptional regulation of the sMMO gene cluster in the methanotrophic bacterium Methylococcus capsulatus (Bath). Using Northern blot analysis and primer extension experiments, it was shown that the six ORFs of the sMMO gene cluster are organized as an operon and the transcripts produced upon expression of this operon have been identified. The synthesis of these transcripts was under control of a single copper-regulated promoter, which is as yet not precisely defined.
-
-
-
Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif
More LessRelatively limited information about promoter structures in Corynebacterium glutamicum has been available until now. With the aim of isolating and characterizing such transcription initiation signals, random Sau3A fragments of C. glutamicum chromosomal DNA and of the corynebacterial phage øGA1 were cloned into the promoter probe vector pEKplCm and selected for promoter activity by chloramphenicol resistance of transformed C. glutamicum cells. The nucleotide sequence of ten chromosomal and three phage fragments was determined and the transcriptional start (TS) sites were localized by primer extension analyses. Additionally, the promoters of five previously isolated C. glutamicum genes were cloned and mapped. All of the isolated promoters were also functional in the heterologous host Escherichia coli. A comparative analysis of the newly characterized promoter sequences together with published promoters from C. glutamicum revealed conserved sequences centred about 35 bp (ttGcca) and 10 bp (TA.aaT) upstream of the TS site. The position of these motifs and the motifs themselves are comparable to the −35 and −10 promoter consensus sequences of other Gram-positive and Gram-negative bacteria, indicating that they represent transcription initiation signals in C. glutamicum. However, the C. glutamicum consensus hexamer of the −35 region is much less conserved than in E. coli, Bacillus, Lactobacillus and Streptococcus.
-
-
-
Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli
More LessA transcriptional regulator gene, designated adiY, was found downstream of the biodegradative arginine decarboxylase (adiA) gene (previously known as adi) of Escherichia coli. The arginine decarboxylase system is maximally induced under conditions of acidic pH, anaerobiosis and rich medium, and AdiY was found to increase the expression of adiA. The DNA sequence of adiY encodes a protein of 253 amino acids. Primer extension analysis defined the promoter. The amino acid sequence of AdiY showed homology to the XyIS/AraC family of transcriptional regulators, which includes EnvY and AppY. Studies suggested that sequences required for acid induction were also necessary to observe the stimulation by AdiY. An examination of the substitution of AdiY, AppY and EnvY showed that these three proteins can, to some extent, stimulate the other systems.
-
-
-
An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies
More LessThe SDS-insoluble protein fraction of Agaricus bisporus fruiting bodies was solubilized with trifluoroacetic acid. On SDS-PAGE this fraction was found to contain one abundant protein with an apparent M r of 16 kDa. The N-terminal amino acid sequence of this protein was determined and RT-PCR used to isolate a cDNA clone which upon sequencing identified the protein as a typical class I hydrophobin (ABH1). The gene (ABH1) was isolated and sequenced, and a second hydrophobin gene (ABH2) was found about 2.5 kbp downstream of ABH1. Purified ABH1 self-assembled at hydrophobic-hydrophilic interfaces, producing the typical rodlet layer known from other hydrophobins. Similar rodlets were observed on the surface of the fruiting body, while immunological localization showed the hydrophobin to be particularly abundant at the outer surface of fruiting bodies, in the veil and in the core tissue of the stipe. Transcripts of ABH1 were found only in fruiting-body hyphae. The ABH1 hydrophobin is probably solely responsible for the hydrophobicity of the fruiting-body surface but may also line air channels within fruiting bodies.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
