1887

Abstract

The P protein, encoded by , has a central role in the control of nitrogen metabolism in nitrogen-fixing prokaryotes. The gene of was isolated and sequenced. The deduced amino acid sequence had very high sequence identity to other P proteins. The gene, encoding glutamine synthetase, was located 135 bp downstream of and was partially sequenced. is cotranscribed with from a promoter with high similarity to the s-dependent promoter consensus sequence. A putative s promoter was also identified further upstream of . Northern blotting analyses showed that in addition is either transcribed from an unidentified promoter or, more likely, that the transcript is processed to give the mRNA. The total level of the two transcripts was much higher in nitrogen-fixing cells than in ammonia-grown cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1265
1996-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1265.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1265&mimeType=html&fmt=ahah

References

  1. Aguilar O.M., Reiländer H., Arnold W., Pühler A. Rhigobium meliloti nifN (ßxF) gene is part of an operon regulated by a nifA-dependent promoter and codes for a polypeptide homologous to the nifK gene product. J Bacterioi 1987; 169:5393–5400
    [Google Scholar]
  2. Alef K., Zumft W.G. Regulatory properties of glutamine synthetase from the nitrogen-fixing phototrophic bacterium Rhodop-seudomonas palustris. Z Naturforsch 1981; 36c:784–789
    [Google Scholar]
  3. Amar M., Patriarca E.J., Manco G., Bernard P., Riccio A., Lamberti A., Defez R., Laccarino M. Regulation of nitrogen metabolism is altered in a glnB mutant strain of Rhigobium leguminosarum. Mol Microbiol 1994; 11:685–693
    [Google Scholar]
  4. Ausubel M.F., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. Current Protocols in Molecular Biology 1991 New York: John Wiley;
    [Google Scholar]
  5. Berk A.J., Sharp P.A. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of SI endonuclease-digested hybrids. Cell 1977; 12:721–732
    [Google Scholar]
  6. Borghese R., Wall J.D. Regulation of the glnB A operon of Rhodobacter capsulatus. J Bacterioi 1995; 177:4549–4552
    [Google Scholar]
  7. Bozouklian H., Elmerich C. Nucleotide sequence of the Azospirillum brasilense Sp7 glutamine synthetase structural gene. Biochemie 1986; 68:1181–1187
    [Google Scholar]
  8. Carlberg I., Nordlund S. Purification and partial characterization of glutamate synthase from Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J 1991; 279:151–154
    [Google Scholar]
  9. Cheah E., Carr P.D., Suffolk P.M., Vasudevan S.G., Dixon N.E., Ollis D.L. Structure of the Escherichia coli signal transducing protein PII. Curr Biol 1994; 2:981–990
    [Google Scholar]
  10. Chiuarazzi M., Laccarino M. Transcriptional analysis of the glnB-glnA region of Rhigobium leguminosarum biovar viciae. Mol Microbiol 1990; 4:1727–1735
    [Google Scholar]
  11. Engelhardt H., Klemme J.-H. Purification and structural properties of adenylylated and deadenylylated glutamine synthetase from Rhodopseudomonas sphaeroides. Arch Microbiol 1982; 133:202–205
    [Google Scholar]
  12. Falk G., Hampe A., Walker J.E. Nucleotide sequence of the Rhodospirillum rubrum atp operon. Biochem J 1985; 228:391–407
    [Google Scholar]
  13. Forchhammer K., Tandeau De Marsac N. The PII protein in the cyanobacterium Sjnechococcus sp strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacterioi 1994; 176:84–91
    [Google Scholar]
  14. Foster-Hartnett D., Kranz R.G. The Rhodobacter capsulatus glnB gene is regulated by NtrC at tandem rpoIV-independent promoters. J Bacterioi 1994; 176:5171–5176
    [Google Scholar]
  15. Fritsch J., Rothfuchs R., Rauhut R., Klug G. Identification of an mRNA element promoting rate-limiting cleavage of the polycistronic p/v/mRN A in Rhodobacter capsulatus by an enzyme similar to RNase E. Mol Microbiol 1995; 15:1017–1029
    [Google Scholar]
  16. Holtel A., Merrick M. Identification of the Klebsiella pneumoniae glnB gene: nucleotide sequence of wild-type and mutant alleles. Mol Gen Genet 1988; 215:134–138
    [Google Scholar]
  17. Johansson B.C., Gest H. Adenylylation/deadenylylation control of the glutamine synthetase of Rhodopseudomonas capsulata. Eur J Biochem 1977; 81:365–371
    [Google Scholar]
  18. Karn J., Brenner S., Barnett L., Cesareni G. Novel bacteriophage X cloning vector. Proc Natl Acad Sei USA 1980; 77:5172–5176
    [Google Scholar]
  19. Kennedy C., Doetsch N., Meletzus D., Patriarca E., Amar M., Laccarino M. Ammonium sensing in nitrogen fixing bacteria: functions of the glnB and glnD products. Plant Soil 1994; 161:43–57
    [Google Scholar]
  20. Kranz R.G., Pace V.M., Caldicott I.M. Inactivation, sequence, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus. J Bacterioi 1990; 172:53–62
    [Google Scholar]
  21. Ludden P.W., Roberts G.P. Regulation of nitrogenase activity by reversible ADP-ribosylation. Curr Top Cell Regul 1989; 30:23–55
    [Google Scholar]
  22. Magasanik B. Regulation of transcription of the glnALG operon of Esherichia coll by protein phosphorylation. Biochemie 1989; 71:1005–1012
    [Google Scholar]
  23. Martin G.B., Thomashow M.F., Chelm B.K. Bradyr-hizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. J Bacteriol 1989; 171:5638–5645
    [Google Scholar]
  24. Merrick M.J. Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In Biological Nitrogen Fixation 1992 Edited by Stacey G., Burris R.H., Evans H.J. London: Chapman & Hall; pp 835–876
    [Google Scholar]
  25. Michalski W.P., Nicholas D.J.D. Regulation of N2 fixation and ammonia assimilation in Rhodopseudomonas sphaeroides f sp denitrificans Role of glutamine. J Gen Microbiol 1984; 130:1069–1077
    [Google Scholar]
  26. Minchin S.D., Austin S., Dixon R.A. Transcriptional activation of the Klebsiella pneumoniae nifEA promoter by NtrC is face-of-the-helix dependent and the activator stabilizes the interaction of sigma 54-RNA polymerase with the promoter. EMBO 1989; J8:3491–3499
    [Google Scholar]
  27. Miranda-Rios J., Sanchez-Pescador R., Ureda M., Covarrubias A.A. The complete sequence of the glnAEG operon of Escherichia coli K12. Nucleic Acids Res 1987; 15:2757–2770
    [Google Scholar]
  28. Nordlund S., Kanemoto R.H., Murrell S.A., Ludden P.W. Properties and regulation of glutamine synthetase from Rhodospirillum rubrum. J Bacteriol 1985; 161:13–17
    [Google Scholar]
  29. Ormerod J.G., Ormerod K.S., Gest H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 1961; 94:449–463
    [Google Scholar]
  30. Quinto C., De La Vega H., Flores M., Leemans J., Cevallos M.A., Pardo M.A., Azpiroz R., De Lourdes Girard M., Calva E., Palacios R. Nitrogenase reductase: a functional multigene family in Rhiyobium phaseoli. Proc Natl Acad Sci USA 1985; 82:1170–1174
    [Google Scholar]
  31. Rhee S.G., Chock P.B., Stadtman E.R. Regulation of Escherichia coli glutamine synthetase. Adv Engymol 1989; 62:37–92
    [Google Scholar]
  32. Roelvink P.W., Harmsen M., Van Kammen A., Van den Bos R.C. The niJH promoter region of Rhfobium leguminosarum: nucleotide sequence and promoter elements controlling activation by NifA protein. Gene 1990; 87:31–36
    [Google Scholar]
  33. Soliman A., Nordlund S. Purification and partial characterization of glutamine synthetase from the photosynthetic bacterium Rhodospirillum rubrum. Biochim Biophys Acta 1989; 994:138–141
    [Google Scholar]
  34. Son H.S., Rhee S.G. Cascade control of Escherichia coli glutamine synthetase. Purification and properties of PII protein and nucleotide sequence of its structural gene. J Biol Chem 1987; 262:8690–8695
    [Google Scholar]
  35. Tsinoremas N.F., Castets A.M., Harrison M.A., Allen J.F., Tandeau De Marsac N. Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Proc Natl Acad Sci USA 1991; 88:4565–4569
    [Google Scholar]
  36. Vasudevan S.G., Gedye C., Dixon N.E., Cheah E., Carr P.D., Suffolk P.M., Jeffrey P.D., Ollis D.L. Escherichia coli PII protein: purification, crystallization and oligomeric structure. FEBS Lett 1994; 337:255–258
    [Google Scholar]
  37. Watson J.M., Schofield P.R. Species-specific, symbiotic plasmid-located repeated DNA sequences in Rhpobium trifolii. Mol Gen Genet 1985; 199:279–289
    [Google Scholar]
  38. Weaver R.F., Weissman C. Mapping of RNA by a modification of the Berk-Sharp procedure: the 5' termini of 15S fi-globin mRNA precursor and mature /Lglobin mRNA have identical map coordinates. Nuceic Acids Res 1979; 7:1175–1193
    [Google Scholar]
  39. Woehle D.L. ATP-dependent and NAD-dependent modifications of glutamine synthetase from Rhodospirillum rubrum 1992 PhD thesis, University of Wisconsin-Madison;
    [Google Scholar]
  40. Woehle D.L., Lueddecke B.A., Ludden P.W. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J Biol Chem 1990; 265:13741–13749
    [Google Scholar]
  41. De Zamaroczy M., Delorme F., Elmerich C. Characterization of three different nitrogen-regulated promoter regions for the expression of glnB and glnA in Azospirillum brasilense. Mol Gen Genet 1990; 224:421–430
    [Google Scholar]
  42. De Zamaroczy M., Paquelin A., Elmerich C. Functional organization of the glnB-gin A cluster of Ayospirillum brasilense. J Bacteriol 1993; 175:2507–2515
    [Google Scholar]
  43. Zhang Y., Cummings A.D., Burris R.H., Ludden P.W., Roberts G.P. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. J Bacteriol 1995; 177:5322–5326
    [Google Scholar]
  44. Zinchenko V., Churin Y., Shestopalov V., 81 Shestakov S. Nucleotide sequence and characterization of the Rhodobacter sphaeroides glnB and glnA genes. Microbiology 1994; 140:2143–2151
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-5-1265
Loading
/content/journal/micro/10.1099/13500872-142-5-1265
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error