1887

Abstract

We designed a panel of four 16S rRNA-targeted oligonucleotide probes specific for bacteria of the phylum cytophaga-flavobacter-bacteroides (CFB). Probes CF319a and CF319b are targeted to members of the flavobacteria-cytophaga group and the genus , whereas probe BAC303 has a target region characteristic for the genera and within the bacteroides group. The probe FFE8b was developed for species-specific hybridizations with . All probes were designed by computer-assisted sequence analysis and compared to all currently accessible 16S and 23S rRNA sequences. The oligonucleotides were further evaluated by whole-cell and non-radioactive dot-blot hybridization against reference strains of the CFB phylum and other major lineages of . The newly developed probes were used together with other higher-order probes to analyse the structure and community composition in complex environments. In activated sludge samples, members of the flavobacteria-cytophaga group were revealed by hybridization as important constituents of sludge flocs and characteristic colonizers of filamentous bacteria. By application of fluorescent probe BAC303, members of the genera and could be visualized without prior cultivation as an important part of the human faecal microflora.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1097
1996-05-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1097.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1097&mimeType=html&fmt=ahah

References

  1. Amann R.I., Binder B.I., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990a; 56:1919–1925
    [Google Scholar]
  2. Amann R.I., Krumholz L., Stahl D.A. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 1990b; 172:762–770
    [Google Scholar]
  3. Amann R.I., Springer N., Ludwig W., Görtz H.-D., Schleifer K.-H. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 1991; 351:161–164
    [Google Scholar]
  4. Amann R.I., Stromley J., Devereux R., Key R., Stahl D.A. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 1992; 58:614–623
    [Google Scholar]
  5. Bauwens M., De Ley i. Improvements in the taxonomy of Flavobacterium by DNA-RNA hybridization. In The Flavobacterium-Cytophaga Group 1981 Edited by Reichenbach H., Weeks O.B. Weinheim: Verlag Chemie; pp 27–31
    [Google Scholar]
  6. Bergey D.H., Harrison F.C., Breed R.S., Hammer B.W., Huntoon F.M. Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology 1923 Baltimore: Williams & Wilkins; pp 97–117
    [Google Scholar]
  7. Brosius J., Dull T.L., Sleeter D.D., Noller H.F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981; 148:107–127
    [Google Scholar]
  8. Burggraf S., Mayer T., Amann R., Schadhauser S., Woese C.R., Stetter K.O. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 1994; 60:3112–3119
    [Google Scholar]
  9. Callies E., Mannheim W. Deoxyribonucleic acid relatedness of some menaquinone producing Flavobacterium and Cytophaga strains. Antonie Eeeuwenhoek 1980; 46:41–49
    [Google Scholar]
  10. Collins M.D., Shah H.N., Mitsuoka T. Reclassification of Bacteroides microfusus (Kaneuchi and Mitsuoka) in a new genus Rikenella, as Rikenella microfusus comb nov. Syst Appl Microbio 1985; 16:79–81
    [Google Scholar]
  11. Ehrmann M., Ludwig W., Schleifer K.H. Species specific oligonucleotide probe for the identification of Streptococcus thermo-philus. Syst Appl Microbiol 1992; 15:453–455
    [Google Scholar]
  12. Fox G.E., Pechman K.J., Woese C.R. Comparative cataloging of 16S ribosomal ribonucleic acid molecular approach to procaryotic systematics. Int J Syst Bacteriol 1977; 27:44–57
    [Google Scholar]
  13. Gherna R., Woese C.R. A partial phylogenetic analysis of the ‘Flavobacter-Bacteroides ’ phylum: basis for taxonomic restructuring. Syst Appl Microbiol 1992; 15:513–521
    [Google Scholar]
  14. Giovannoni S.J., De Long E.F., Olsen G.J., Pace N.R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 1988; 170:720–726
    [Google Scholar]
  15. Güde H. Occurrence of Cytophagas in sewage plants. Appl Environ Microbiol 1980; 39:756–763
    [Google Scholar]
  16. Holdeman L.V., Good I.J., Moore W.E.G. Human fecal flora: variation in bacterial composition within individuals and a possible effect on emotional stress. Appl Environ Microbiol 1976; 31:359–375
    [Google Scholar]
  17. Holmes B., Owen R.J., McMeekin T.A. Genus Flavobacterium. In Bergey’s Manual of Systematic Bacteriology 1984 Edited by Krieg N.R., Holt J.G. Baltimore: Williams & Wilkins; 2th edn, pp 353–361
    [Google Scholar]
  18. Kuritza A.P., Salyers A.A. Use of a species-specific DNA hybridization probe for enumerating Bacteroides vulgatus in human feces. Appl Environ Microbiol 1985; 50:958–964
    [Google Scholar]
  19. Kuritza A.P., Shaughnessy P., Salyers A.A. Enumeration of polysaccharide-degrading Bacteroides species in human feces by using species-specific DNA probes. Appl Environ Microbiol 1986; 51:385–390
    [Google Scholar]
  20. Ludwig W., Schleifer K.H. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rep 1994; 15:155–173
    [Google Scholar]
  21. Mannheim W. Taxonomically useful test procedures pertaining to bacterial lipoquinones and associated functions, with special reference to Flavobacterium and Cytophaga. In The Flavobacterium-Cytophaga Group 1981 Edited by Reichenbach H., Weeks O.B. Weinheim: Verlag Chemie; pp 115–124
    [Google Scholar]
  22. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 1992; 15:593–600
    [Google Scholar]
  23. Manz W., Szewzyk U., Eriksson P., Amann R., Schleifer K.-H., Stenström T.-A. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol 1993; 59:2293–2298
    [Google Scholar]
  24. Manz W., Wagner M., Amann R., Schleifer K.-H. In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Res 1994; 28:1715–1723
    [Google Scholar]
  25. Moore W.E.C., Holdeman L.V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974; 27:961–979
    [Google Scholar]
  26. Moore W.E.C., Cato E.P., Holdeman L.V. Some current concepts in intestinal bacteriology. Am J Clin Nutr 1978; 31:S33–S42
    [Google Scholar]
  27. Oyaizu H., Komagata K. Chemotaxonomic and phenotypic characterization of the strains of species in the F lavobacterium-Cytophaga complex. J Gen Appl Microbiol 1981; 27:57–107
    [Google Scholar]
  28. Paster B.J., Ludwig W., Weisburg W.G., Stackebrandt E., Hespell R.B., Hahn C.M., Reichenbach H., Stetter K.O., Woese C.R. A phylogenetic grouping of the Bacteroides, Cytophagas, and certain Flavobacteria. Syst Appl Microbiol 1985; 6:34–42
    [Google Scholar]
  29. Paster B.J., Dewhirst F.E., Olson I., Fraser G.J. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol 1994; 176:725–732
    [Google Scholar]
  30. Pike L.F. Aerobic bacteria. In Ecological Aspects of Used Water Treatment 1975 Edited by Curds C.R., Hawkes H.A. London: Academic Press; 1 pp 1–63
    [Google Scholar]
  31. Pipes W.O. Microbiology of activated sludge bulking. Adv Appl Microbiol 1978; 24:85–127
    [Google Scholar]
  32. Reichenbach H. Order 1. Cytophagales In Bergey’s Manual of Systematic Bacteriology 1989 Edited by Staley J.T., Bryant M.P., Pfennig N., Holt J.G. Baltimore: Williams & Wilkins; 3 pp 2011–2082
    [Google Scholar]
  33. Reichenbach H., Kohl W., Achenbach H. The flexirubin-type pigments, chemosystematically useful compounds. In The Flavobacterium-Cytophaga Group 1981 Edited by Reichenbach H., Weeks O.B. Weinheim: Verlag Chemie; pp 101–108
    [Google Scholar]
  34. Roberts M.C., Moncla B., Kenny G.E. Chromosomal DNA probes for the identification of Bacteroides species. J Gen Microbiol 1987; 133:1423–1430
    [Google Scholar]
  35. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H. In situ probing of Gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology 1994; 140:2849–2858
    [Google Scholar]
  36. Salyers A.A. Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 1984; 38:293–313
    [Google Scholar]
  37. Schleifer K.H., Ludwig W., Amann R. Nucleic acid probes. In Handbook of New Bacterial Systematics 1993 Edited by Goodfellow M., McDonnell A.G.O. London: Academic Press; pp 464–499
    [Google Scholar]
  38. Shah H.N. The genus Bacteroides and related taxa. In The Procaryotes 1992 Edited by Balows A., Trüper H.G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer; pp 3593–3607
    [Google Scholar]
  39. Shah H.N., Collins M.D. Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroidesgingivalis, and Bacteroides endodon-talis in a new genus, Porphyromonas. Int J Syst Bacteriol 1988; 38:128–131
    [Google Scholar]
  40. Shah H.N., Collins M.D. Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroidesfragilis and closely related species. Int J Syst Bacteriol 1989; 39:85–87
    [Google Scholar]
  41. Shewan J.M., McMeekin T.A. Taxonomy (and ecology) of Flavobacterium and related genera. Annu Rev Microbiol 1983; 37:233–252
    [Google Scholar]
  42. Spring S., Amann R., Ludwig W., Schleifer K.H., Petersen N. Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Syst Appl Microbiol 1992; 15:116–122
    [Google Scholar]
  43. Stahl D.A., Amann R.I. Development and application of nucleic acid probes in bacterial systematics. In Sequencing and Hybridisation Techniques in Bacterial Systematics 1991 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley; pp 205–248
    [Google Scholar]
  44. Trebesius K., Amann R., Ludwig W., Miihlegger K., Schleifer K.-H. Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Appl Environ Microbiol 1994; 60:3228–3235
    [Google Scholar]
  45. Wagner M., Amann R., Lemmer H., Schleifer K.-H. Probing activated sludge with oligonucleotides specific for proteobacteria'. inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 1993; 59:1520–1525
    [Google Scholar]
  46. Winogradsky S. Études sur la microbiologie du sol. Sur la dégradation de la cellulose dans le sol. Ann Inst Pasteur 1929; 43:549–633
    [Google Scholar]
  47. Woese C.R. Bacterial evolution. Microbiol Rev 1987; 51:221–271
    [Google Scholar]
  48. Woese C.R., Maloy S., Mandelco L., Raj H.D. Phylogenetic placement of Spirosomaceae. Syst Appl Microbiol 1990a; 13:19–23
    [Google Scholar]
  49. Woese C.R., Yang D., Mandelco L., Stetter K.O. The flexibacter-flavobacter connection. Syst Appl 1990b; MicrobiolTh:161–165
    [Google Scholar]
  50. Zarda B., Amann R., Wallner G., Schleifer K.-H. Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J Gen Microbiol 1991; 137:2823–2830
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-5-1097
Loading
/content/journal/micro/10.1099/13500872-142-5-1097
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error