1887

Abstract

Three 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial isolates were obtained from the highly saline and alkaline Alkali Lake site in southwestern Oregon contaminated with 2,4-D production wastes. While similar in most respects, the three isolates differed significantly in 2,4-D degradation rates, with the most active strain, 1-18, demonstrating an ability to degrade up to 3000 mg 2,4-D I in 3 d. This strain was well adapted to the extreme environment from which it was isolated, growing optimally on 2,4-D at pH 8.4-9.4 and at sodium ion concentrations of 0.6-1.0 M. According to its optimum salt concentration and pH for growth, this isolate was a moderately halophilic, alkaliphilic bacterium. The 16S RNA gene sequence (303 nt) was identical for all three isolates and most closely resembled those of the moderately halophilic eubacteria of the family (91% identity). Biochemical and genetic examination revealed strain 1-18 utilizes the same 2,4-D degradation pathway as most of the 2,4-D-degrading bacteria from non-extreme environments. Hybridization data and comparison of the partial sequences of the gene from the Alkali Lake isolates with those of bacteria from non-extreme environments suggested a common genetic origin of the 2,4-D degradation pathway in the two groups of micro-organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1115
1996-05-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1115.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1115&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller M., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol 1990; 215:403–410
    [Google Scholar]
  2. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Smith J.A., Seidman J.G., Struhl K. Current Protocols in Molecular Biology 1987 New York: John Wiley;
    [Google Scholar]
  3. Chaudhry G.R., Chapalamadugu S. Biodégradation of halogenated organic compounds. Microbiol Rev 1991; 55:59–79
    [Google Scholar]
  4. Del Moral A., Prado B., Quesada E., Garcia T., Ferrer R., Ramos-Comenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. J Gen Microbiol 1988; 134:733–741
    [Google Scholar]
  5. Dobson S.J., McMeekin T.A., Franzmann P.D. Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Int J Syst Bacteriol 1993; 43:665–673
    [Google Scholar]
  6. Don R.H., Pemberton J.M. Properties of six pesticide degradation plasmids isolated from Alcaligenes eutrophus and Alca-ligenes paradoxus. J Bacteriol 1981; 145:681–686
    [Google Scholar]
  7. Don R.H., Pemberton J.M. Genetic and physical map of the 2, 4-dichlorophenoxyacetic acid-degradative plasmid pP4. J Bacteriol 1985; 161:466–468
    [Google Scholar]
  8. Dorn E., Knackmuss H.-J. Chemical structure and biodegradability of halogenated aromatic compounds Two catechol 1, 2-dioxygenases from a 3-chlorobenzoate grown pseudomonad. Biochem J 1978; 174:73–84
    [Google Scholar]
  9. Franzmann P.D., Tindall B.J. A chemotaxonomic study of the members of the family Halomonadaceae. Syst Appl Microbiol 1990; 13:142–147
    [Google Scholar]
  10. Franzmann P.D., Wehmeyer U., Stackebrandt E. Halomonadaceae fam. nov. a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 1988; 11:16–19
    [Google Scholar]
  11. Fukumori F., Hausinger R.P. Purification and characterization of 2, 4-dichlorophenoxyacetate/a-ketoglutarate dioxygenase. J Biol Chem 1993; 268:24311–24317
    [Google Scholar]
  12. Fulthorpe R.R. Survival, activity and transfer of a bacterial catabolic transposon in an aquatic ecosystem 1991 PhD thesis, Carleton University, Ottawa;
    [Google Scholar]
  13. Fulthorpe R.R., McGowan G., Maltseva O.V., Holben W.H., Tiedje J.M. 2, 4-Dichlorophenoxyacetic acid degrading bacteria are mosaics of catabolic genes. Appl Environ Microbiol 1995; 61:3274–3281
    [Google Scholar]
  14. Galinski E.A. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 1993; 49:487–496
    [Google Scholar]
  15. Ghosal D., You l.-S. Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Mol Gen Genet 1988; 211:113– 120
    [Google Scholar]
  16. Ghosal D., You l.-S. Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Gene 1989; 83:225–232
    [Google Scholar]
  17. Grant W.D., Tindall B.J. The alkaline saline environment. In Microbes in Extreme Environments 1986 Kdited by Herbert R.A., Cood G.A. London: Academic Press; pp 25–54
    [Google Scholar]
  18. Haggblom M.M. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 1992; 103:29–72
    [Google Scholar]
  19. Hochstein L.I. The physiology and metabolism of the extremely halophilic bacteria. In Halophilic Bacteria 1988 Edited by Rodriguez-Valera F. Boca Raton, FL: CRC Press; 2 pp 67–-79
    [Google Scholar]
  20. Holben W.E., Schroeter B., M.; Calabrese V.G.M., Olsen R.H., Kukor J.K., Biederbeck V.O., Smith A.E., Tiedje J.M. Gene probe analysis of soil microbial populations selected by amendment with 2, 4-dichlorophenoxyacetic acid. Appl Environ Microbiol 1992; 58:3941–3948
    [Google Scholar]
  21. Imhoff J.F., Trüper H.G. Ectothiorhodospira halochloris sp. nov. a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 1977; 114:115–121
    [Google Scholar]
  22. Johnson R.L., Brillante S.M., Isabelle L.M., Houck J.E., Pankow J.F. Migration of chlorophenolic compounds at the chemical waste disposal site at Alkali Lake, Oregon 2 Contaminant distribution, transport, and retardation. Ground Water 1985; 23:652–666
    [Google Scholar]
  23. Jones B.E., Grant W.D., Collins N.C., Mwatha W.E. Alkaliphiles: diversity and identification. In Bacterial Diversity and Sytematics 1994 Edited by Priest F.G., Ramos-Cormenzana A., Tindall B.J. New York & London: Plenum Press; pp 195–230
    [Google Scholar]
  24. Kuhm A.E., Schldmann M., Knackmuss H.-J., Pieper D. Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP134. Biochem J 1990; 266:877–883
    [Google Scholar]
  25. Kushner D.J., Kamekura M. Physiology of halophilic bacteria. In Halophilic Bacteria 1988 Edited by Rodriguez-Valera F. Boca Raton, FL: CRC Press; 1 pp 109–138
    [Google Scholar]
  26. Lane D.J., Pace B., Olsen G.J., Stahl D.A., Sogin M.L., Pace N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 1985; 82:6955–6959
    [Google Scholar]
  27. Larsen N., Olsen G.J., Madak B.L., McCaughey M.J., Overbeek R., Make T.J., Marsh T.L., Woese C.R. The ribosomal database project. Nucleic Acids Rir 1993; 21:3021–3023
    [Google Scholar]
  28. Maltseva O.V., Solyanikova I.P., Golovleva L.A., Schlbmann M., Knackmuss H.-J. Dienelactone hydrolase from Rhodococcus erythropolis 1CP: purification and properties. Arch Microbiol 1994; 162:368–374
    [Google Scholar]
  29. Oren A., Gurevich P., Azachi M., Henis Y. Microbial degradation of pollutants at high salt concentration. Biodégradation 1992; 3:387–398
    [Google Scholar]
  30. Pankow J.F., Johnson R.L., Houck J.E., Brillante S.M., Bryan W.J. Migration of chlorophenolic compounds at the chemical waste disposal site at Alkali Lake, Oregon 1 Site description and ground-water flow. Ground Water 1984; 22:593–601
    [Google Scholar]
  31. Perkins E.J., Gordon M.P., Caceres O., Lurquin P.F. Organization and sequence analysis of the 2, 4-dichlorophenol hydroxylase and dichlorocatechol oxidative opérons of plasmid pJP4. J Bacteriol 1990; 172:2351–2359
    [Google Scholar]
  32. Sasser M., Wichman M.D. Identification of microorganisms through use of gas chromatography and high performance liquid chromatography. In Manual of Clinical Microbiology 1991 Edited by Hausler W.J., Herrmann K.L., Isenberg H.D., Shadony H.J. Washington, DC: American Society for Microbiology; pp 11–118
    [Google Scholar]
  33. Schlômann M., Pieper D.H., Knackmuss H.-J. Enzymes of haloaromatics degradation: Variations of Alcaligenes on a theme by Pseudomonas. In Pseudomonas: Biotransformation 1990 Edited by Silver S., Chakrabarty A.M., Iglevsky B., Kaplan S. Washington, DC: American Society for Microbiology; Pathogenesis, and Evolving Biotechnology, pp 185–196
    [Google Scholar]
  34. Seibert V., Stadler-Fritzsche K., Schlômann M. Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP 134 (pJP4). J Bacteriol 1993; 175:6745–6754
    [Google Scholar]
  35. Suwa Y., Holben W.E., Forney L.J. Cloning of a novel 2.4-D catabolic gene isofunctional to tfdA from Pseudomonas sp TFD3. In Abstracts of the 94th General Meeting of the American Society for Microbiology 1994 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Tonso N.L., Matheson V.G., Holben W.E. Polyphasic characterization of a suite of bacterial isolates capable of degrading 2.4-D. Microb Ecol 1995; 30:1–22
    [Google Scholar]
  37. Vallaeys T., Fulthorpe R., R.; Wright A.M., Soulas G. The metabolic pathway of 2, 4-dichlophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol Ecol 1996 (in press)
    [Google Scholar]
  38. Vreeland R.H., Litchfield C.D., Martin E.L., Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495
    [Google Scholar]
  39. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703
    [Google Scholar]
  40. Wolin E., A., Wolin M.J., Wolfe R.S. Formation of methane by bacterial extracts. J Biol Chem 1963; 238:2882–2886
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-5-1115
Loading
/content/journal/micro/10.1099/13500872-142-5-1115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error