- Volume 97, Issue 7, 2016
Volume 97, Issue 7, 2016
- Animal
-
- Large DNA Viruses
-
-
African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever
African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available and progress is hindered by lack of knowledge concerning the extent of ASFV strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Available data from vaccination/challenge experiments in pigs indicate that ASF protective immunity may be haemadsorption inhibition (HAI) serotype-specific. Recently, we have shown that two ASFV proteins, CD2v (EP402R) and C-type lectin (EP153R), are necessary and sufficient for mediating HAI serological specificity (Malogolovkin et al., 2015).. Here, using ASFV inter-serotypic chimeric viruses and vaccination/challenge experiments in pigs, we demonstrate that serotype-specific CD2v and/or C-type lectin proteins are important for protection against homologous ASFV infection. Thus, these viral proteins represent significant protective antigens for ASFV that should be targeted in future vaccine design and development. Additionally, these data support the concept of HAI serotype-specific protective immunity.
-
-
-
Cytomegalovirus pUL50 is the multi-interacting determinant of the core nuclear egress complex (NEC) that recruits cellular accessory NEC components
Nuclear egress of herpesvirus capsids through the nuclear envelope is mediated by the multimeric nuclear egress complex (NEC). The human cytomegalovirus (HCMV) core NEC is defined by an interaction between the membrane-anchored pUL50 and its nuclear co-factor pUL53, tightly associated through heterodimeric corecruitment to the nuclear envelope. Cellular proteins, such as p32/gC1qR, emerin and protein kinase C (PKC), are recruited by direct interaction with pUL50 for the multimeric extension of the NEC. As a functionally important event, the recruitment of both viral and cellular protein kinases leads to site-specific lamin phosphorylation and nuclear lamina disassembly. In this study, interaction domains within pUL50 for its binding partners were defined by co-immunoprecipitation. The interaction domain for pUL53 is located within the pUL50 N-terminus (residues 10–169), interaction domains for p32/gC1qR (100–358) and PKC (100–280) overlap in the central part of pUL50, and the interaction domain for emerin is located in the C-terminus (265–397). Moreover, expression and formation of core NEC proteins at the nuclear rim were consistently detected in cells permissive for productive HCMV replication, including two trophoblast-cell lines. Importantly, regular nuclear-rim formation of the core NEC was blocked by inhibition of cyclin-dependent kinase (CDK) activity. In relation to the recently published crystal structure of the HCMV core NEC, our findings result in a refined view of NEC assembly. In particular, we suggest that CDKs may play an important regulatory role in NEC formation during HCMV replication.
-
- Retroviruses
-
-
Poly(ADP-ribose) polymerase-1 silences retroviruses independently of viral DNA integration or heterochromatin formation
More LessPARP-1 silences retrotransposons in Drosophila, through heterochromatin maintenance, and integrated retroviruses in chicken. Here, we determined the role of viral DNA integration and cellular heterochromatin in PARP-1-mediated retroviral silencing using HIV-1-derived lentiviral vectors and Rous-associated virus type 1 (RAV-1) as models. Analysis of the infection of PARP-1 knockout and control cells with HIV-1 harbouring WT integrase, in the presence or absence of an integrase inhibitor, or catalytic-dead mutant integrase indicated that silencing does not require viral DNA integration. The mechanism involves the catalytic activity of histone deacetylases but not that of PARP-1. In contrast to Drosophila, lack of PARP-1 in avian cells did not affect chromatin compaction globally or at the RAV-1 provirus, or the cellular levels of histone H3 N-terminal acetylated or Lys27 trimethylated, as indicated by micrococcal nuclease accessibility and immunoblot assays. Therefore, PARP-1 represses retroviruses prior to viral DNA integration by mechanisms involving histone deacetylases but not heterochromatin formation.
-
-
-
MCPIP1/regnase-I inhibits simian immunodeficiency virus and is not counteracted by Vpx
More LessWe have previously shown that the cellular RNase MCPIP1/regnase-1 potently blocks HIV-1 infection in resting CD4+ T-cells. As simian immunodeficiency virus (SIV) encodes an accessory protein named Vpx, which enhances viral replication in resting CD4+ T-cells by degrading the cellular restriction factor SAMHD1, we investigated whether MCPIP1 restricts SIV infection and whether Vpx protein antagonizes MCPIP1-mediated restriction. In co-transfection studies, human MCPIP1 markedly reduced the production of infectious SIV, whereas MCPIP2 and MCPIP3 had little effect. MCPIP1 derived from cynomolgus monkey also inhibited human immunodeficiency virus (HIV-1) and SIV production, albeit to a lesser degree. Lastly, expression of SIV Vpx protein did not reduce MCPIP1 at the protein level, nor did it ablate the MCPIP1-mediated restriction. In conclusion, both human and cynomolgus monkey MCPIP1 restrict SIV replication. Unlike SAMHD1, MCPIP1-mediated HIV-1 restriction cannot be overcome by SIV Vpx.
-
-
-
Detailed analysis of the promoter activity of an attenuated lentivirus
In spite of an eradication campaign that eliminated clinical cases of caprine arthritis encephalitis virus-induced arthritis in the Swiss goat population, seroconversions are still observed. In the affected flocks, viruses belonging mainly to the small ruminant lentivirus A4 subtype are regularly isolated. These viruses are considered attenuated, except in the mammary gland, where high viral loads and histopathological lesions have been observed. We previously characterized and sequenced such field isolates, detecting several potentially attenuating mutations in their LTR. Here we present a detailed analysis of the promoter activity of these genetic elements, which was comparable to those of virulent isolates. An AP-1 binding site was shown to be crucial for promoter activity in reporter gene assays and also in the context of a replicating molecular clone. Other sites, such as AML(vis) and a conserved E-box, appeared to be less crucial. Analysis of a unique AP-4 site showed a clear discrepancy between results obtained with reporter gene assays and those with mutated viruses. Within the limits of this in vitro study, we did not find evidence pointing to the LTR as the genetic correlate of attenuation for these viruses. Finally, the limited replication of SRLV A4 in mammary cell culture could not explain the suggested mammary tropism. In contrast, and in view of the abundance of macrophages in the mammary gland, it is the striking replication capacity of SRLV A4 in these cells, unaffected by all LTR mutations tested, which may explain the apparent mammary tropism of these viruses.
-
- Insect
-
- RNA Viruses
-
-
Reconstitution of the RNA-dependent RNA polymerase activity of Antheraea mylitta cypovirus in vitro using separately expressed different functional domains of the enzyme
More LessAntheraea mylitta cytoplasmic polyhedrosis virus is a segmented dsRNA virus of the family Reoviridae. Segment 2 (S2)-encoded RNA-dependent RNA polymerase (RdRp) helps the virus to propagate its genome in the host cell of the silkworm, Antheraea mylitta. Cloning, expression, purification and functional analysis of individual domains of RdRp have demonstrated that the purified domains interact in vitro. The central polymerase domain (PD) shows nucleotide binding properties, but neither the N-terminal domain (NTD) nor the C-terminal domain (CTD). Isolated PD does not exhibit RdRp activity but this activity can be reconstituted when all three domains are included in the reaction mixture. Molecular dynamics simulation suggests that the isolated PD has increased internal motions in comparison to when it is associated with the NTD and CTD. The motions of the separated PD may lead to the formation of a less accessible RNA template-binding channel and, thus, impair RdRp activity.
-
- TSE Agents
-
-
-
Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle
More LessChronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease-resistant prion protein throughout the central nervous system (CNS), as well as in both lymphatic and excretory tissues – an aspect of prion disease pathogenesis not observed in cattle with BSE. Using seeded amplification through real-time quaking-induced conversion, we investigated whether the bovine host or prion agent was responsible for this aspect of TSE pathogenesis. We blindly examined numerous central and peripheral tissues from cattle inoculated with CWD for prion seeding activity. Seeded amplification was readily detected in the CNS, though rarely observed in peripheral tissues, with a limited distribution similar to that of BSE prions in cattle. This seems to indicate that prion peripheralization in cattle is a host-driven characteristic of TSE infection.
-
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 73 (1992 - 2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)